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Motivation

• GPU performance highly susceptible to memory access patterns 

• Even stronger in multi-GPU systems (NUMA factor: 10-20x) 

• Not much research w.r.t. multi-GPU memory access patterns 

• Interesting for multi-GPU ports of single-GPU applications 

→ Collect memory traces from single-GPU applications and 
     analyze for virtual multi-GPU behavior
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Outline

• Trace collection 

• Analysis methodology 

• Analysis results 

• Summary/Outlook
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Trace Collection

• Multiple options to extract memory 
accesses 

• Instrumentation good compromise 
between speed and accuracy 

• Host AND GPU are instrumented, 
connected via shared queue
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Trace Collection - Overview

• Instrumenting CUDA applications 

• Open source plugin (Github) based on Clang 

• Plugin consists of three parts 

• Device instrumentation 

• Host instrumentation 

• Shared queue
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Trace Collection - Device

• Locate queue 

• Locate global memory accesses 

• Instrument memory accesses
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__device__ uint8_t *queue;

__global__ K(float* arr) {
  __shared__ float shmem[512];
  shmem[address_a] = f();
  trace(queue, address_b, sizeof(float));
  arr[address_b] = g(); 
}

__global__ K(float* arr) {
  __shared__ float shmem[512];
  shmem[address_a] = f();

  arr[address_b] = g(); 
}



Trace Collection - Host

• Locate kernel launch 

• Prepare queue 

• Queue consumer thread management

!7

K <<<..., stream>>> (...); 

prepare_queue (stream, "K");
cudaStreamAddCallback (stream, start_q, "K");
K <<<..., stream>>> (...);
cudaStreamAddCallback (stream, stop_q, NULL);



Trace Collection - Queue

Phase 1 - GPU: writes to queue until alloc hits watermark  
                Host: wait for commit to hit watermark 

Phase 2 - Host: read data and reset commit and alloc  
                GPU: wait for alloc to reset below watermark
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Phase 1: GPU writes
commit alloc

Phase 2: Host clears



Methodology - Communication

• Intersection between writes of thread block set A and reads of thread block set B 

• Kernel of A must precede kernel of B (relaxed consistency) 

• Thread block sets can have arbitrary shape → partition = thread block set
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Methodology - Partitioning

                         Wanted:      (x, y, z) → {0, ..., n-1}  
                         Mapping from Thread Block IDs to partition 

• Consistent results for different thread grid sizes and dimensionalities 

• Spatial locality of thread blocks' accesses → difficult 

• Spatial locality of thread blocks' IDs → feasible
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Methodology - Partitioning
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Z-Order curve 
Recursive Zs

Lexicographic  
"row-major order"

Colexicographic 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Results - Workloads

• Workloads 

• Parboil   - 7/11 

• Rodinia  - 11/23 

• SHOC   - 4/9 

• Custom applications - 5/5
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• Reasons for exclusion 

• Unsupported features 

• Tracing incompatibilities 

• Excessive trace size 

• Single Kernel launch



Results - Data Origin

• Data read from the GPU at least once, normalized to full working set 

• More than 50% for 13 / 27
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Results - Remote Loads

• Data read from other partitions, normalized to full working set (16 partitions) 

• Identical for most applications (one-dimensional kernels) 

• Otherweise Z-Order has best median for all but two application
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• Summed communication between partitions, normalized to full working set 

• Z-Order partitioning only, 16 partitions 

• Sensitivity for thread distribution varies significantly
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Summary & Outlook

• Open Source CUDA instrumentation for memory accesses 

• Analysis methodology works → more partitioning mappings needed 

• High diversity throughout applications → analysis reveals expected traffic
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Time for Questions
Thank you for your attention


