
Quantifying the NUMA Behavior of Partitioned 
GPGPU Applications

GPGPU-12, April 13, 2019, Providence, RI, USA 

Alexander Matz, Holger Fröning 
Heidelberg University



Motivation

• GPU performance highly susceptible to memory access patterns 

• Even stronger in multi-GPU systems (NUMA factor: 10-20x) 

• Not much research w.r.t. multi-GPU memory access patterns 

• Interesting for multi-GPU ports of single-GPU applications 

→ Collect memory traces from single-GPU applications and 
     analyze for virtual multi-GPU behavior

!2



Outline

• Trace collection 

• Analysis methodology 

• Analysis results 

• Summary/Outlook

!3



Trace Collection

• Multiple options to extract memory 
accesses 

• Instrumentation good compromise 
between speed and accuracy 

• Host AND GPU are instrumented, 
connected via shared queue

!4

Ac
cu

ra
cy

Speed

Static Analysis

Simulation

Instrumentation



Trace Collection

• Multiple options to extract memory 
accesses 

• Instrumentation good compromise 
between speed and accuracy 

• Host AND GPU are instrumented, 
connected via shared queue

!4

Ac
cu

ra
cy

Speed

Static Analysis

Simulation

Instrumentation



Trace Collection - Overview

• Instrumenting CUDA applications 

• Open source plugin (Github) based on Clang 

• Plugin consists of three parts 

• Device instrumentation 

• Host instrumentation 

• Shared queue

!5

Clang
Host Device

CUDA

Binary

Instrumentation Instrumentation

Support System

Codegen

Codegen

Linking



Trace Collection - Overview

• Instrumenting CUDA applications 

• Open source plugin (Github) based on Clang 

• Plugin consists of three parts 

• Device instrumentation 

• Host instrumentation 

• Shared queue

!5

Clang
Host Device

CUDA

Binary

Instrumentation Instrumentation

Support System

Codegen

Codegen

Linking



Trace Collection - Overview

• Instrumenting CUDA applications 

• Open source plugin (Github) based on Clang 

• Plugin consists of three parts 

• Device instrumentation 

• Host instrumentation 

• Shared queue

!5

Clang
Host Device

CUDA

Binary

Instrumentation Instrumentation

Support System

Codegen

Codegen

Linking



Trace Collection - Overview

• Instrumenting CUDA applications 

• Open source plugin (Github) based on Clang 

• Plugin consists of three parts 

• Device instrumentation 

• Host instrumentation 

• Shared queue

!5

Clang
Host Device

CUDA

Binary

Instrumentation Instrumentation

Support System

Codegen

Codegen

Linking



Trace Collection - Device

• Locate queue 

• Locate global memory accesses 

• Instrument memory accesses

!6

__device__ uint8_t *queue;

__global__ K(float* arr) {
  __shared__ float shmem[512];
  shmem[address_a] = f();
  trace(queue, address_b, sizeof(float));
  arr[address_b] = g(); 
}

__global__ K(float* arr) {
  __shared__ float shmem[512];
  shmem[address_a] = f();

  arr[address_b] = g(); 
}



Trace Collection - Host

• Locate kernel launch 

• Prepare queue 

• Queue consumer thread management

!7

K <<<..., stream>>> (...); 

prepare_queue (stream, "K");
cudaStreamAddCallback (stream, start_q, "K");
K <<<..., stream>>> (...);
cudaStreamAddCallback (stream, stop_q, NULL);



Trace Collection - Queue

Phase 1 - GPU: writes to queue until alloc hits watermark  
                Host: wait for commit to hit watermark 

Phase 2 - Host: read data and reset commit and alloc  
                GPU: wait for alloc to reset below watermark

!8

Phase 1: GPU writes
commit alloc

Phase 2: Host clears



Methodology - Communication

• Intersection between writes of thread block set A and reads of thread block set B 

• Kernel of A must precede kernel of B (relaxed consistency) 

• Thread block sets can have arbitrary shape → partition = thread block set

!9

ReadWrite

Comm.

Kernel 1

Array

Kernel 2

Sequential execution
A

B



Methodology - Partitioning

                         Wanted:      (x, y, z) → {0, ..., n-1}  
                         Mapping from Thread Block IDs to partition 

• Consistent results for different thread grid sizes and dimensionalities 

• Spatial locality of thread blocks' accesses → difficult 

• Spatial locality of thread blocks' IDs → feasible

!10



Methodology - Partitioning

!11

Z-Order curve 
Recursive Zs

Lexicographic  
"row-major order"

Colexicographic 
"column-major order"

Partitions 1 2 3 4



Results - Workloads

• Workloads 

• Parboil   - 7/11 

• Rodinia  - 11/23 

• SHOC   - 4/9 

• Custom applications - 5/5

!12

• Reasons for exclusion 

• Unsupported features 

• Tracing incompatibilities 

• Excessive trace size 

• Single Kernel launch



Results - Data Origin

• Data read from the GPU at least once, normalized to full working set 

• More than 50% for 13 / 27

!13

0.00

0.25

0.50

0.75

1.00

C
2M

C
FF

C
H

S

C
N

B

C
R

E

PC
C

PH
I

PL
B

PM
G

PM
Q

PS
P

PS
T

R
BA

R
BF

R
BT

R
DW

R
G

A

R
H

S

R
LU

R
M

Y

R
N

W

R
PF

R
SR

SB
F

SR
E

SS
C

SS
O

Application

Fr
ac

tio
n 

of
 w

or
ki

ng
 s

et



Results - Remote Loads

• Data read from other partitions, normalized to full working set (16 partitions) 

• Identical for most applications (one-dimensional kernels) 

• Otherweise Z-Order has best median for all but two application

!14

0.00

0.25

0.50

0.75

1.00

C
FF

C
H

S
C

N
B

C
R

E
PC

C
PM

G
PM

Q
PS

P
R

BA
R

BF
R

BT
R

G
A

R
M

Y
R

N
W

R
PF

R
SR

SB
F

SR
E

SS
C

SS
O

Application

C
om

m
. (

no
rm

al
ize

d)

0.00

0.25

0.50

0.75

1.00

C
2M

PH
I

PL
B

PS
T

R
DW

R
H

S

R
LU

Application
C

om
m

. (
no

rm
al

ize
d)

Mapping
Lexic.

Colex.

Z−order



• Summed communication between partitions, normalized to full working set 

• Z-Order partitioning only, 16 partitions 

• Sensitivity for thread distribution varies significantly

!15

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12 14 16
Partitions

C
om

m
. (

no
rm

al
ize

d)

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12 14 16
Partitions

C
om

m
. (

no
rm

al
ize

d)
CFF, CRE, 
RDW, RPF

RNW, RSB

CNB, PHI, PMG, RBF, 
RBT, RLS, SSC, SSO

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12 14 16
Partitions

C
om

m
. (

no
rm

al
ize

d)

C2M, CHS, PLB, 
PST, RHS

Results - Scaling



Summary & Outlook

• Open Source CUDA instrumentation for memory accesses 

• Analysis methodology works → more partitioning mappings needed 

• High diversity throughout applications → analysis reveals expected traffic

!16



Time for Questions
Thank you for your attention


