
An Extensible Scheduler for the OpenLambda FaaS Platform
Gustavo Totoy

Escuela Superior Politécnica del

Litoral, ESPOL

Guayaquil, Ecuador

gtotoy@fiec.espol.edu.ec

Edwin F. Boza

Escuela Superior Politécnica del

Litoral, ESPOL

Guayaquil, Ecuador

eboza@fiec.espol.edu.ec

Cristina L. Abad

Escuela Superior Politécnica del

Litoral, ESPOL

Guayaquil, Ecuador

cabad@fiec.espol.edu.ec

ABSTRACT
In a distributed computing platform, co-locating tasks at worker

nodes that store or cache any required files is a time-proven mecha-

nism to reduce task latency.While this problem has been extensively

studied in the Web and Big Data processing domains, it is only re-

cently gaining attention in the serverless computing domain. One

proposed optimization for Function-as-a-Service (FaaS) clouds is to

cache required packages at the worker nodes instead of bundling

them with the cloud functions, thus significantly reducing the func-

tion launch time. However, existing FaaS schedulers are vanilla load

balancers that do not attempt to minimize the movement of pack-

ages or files across the network. As researchers start tackling the

problem of package-aware scheduling and other near-data schedul-

ing optimizations for FaaS platforms, having a common framework

on top of which to implement and evaluate their ideas would be

beneficial, as this would encourage fair comparisons between differ-

ent solutions and facilitate experiment reproducibility. To address

this problem, we present a simple and extensible function scheduler

for the OpenLambda FaaS platform. Our scheduler is implemented

in Go, and is simpler to modify and extend than the ngninx load

balancer used by the original OpenLambda. To illustrate the use-

fulness of our scheduler, we added a package-aware scheduling

algorithm to it. We have released our code so that others can easily

implement new scheduling algorithms for OpenLambda.

ACM Reference Format:
Gustavo Totoy, Edwin F. Boza, and Cristina L. Abad. 2018. An Extensi-

ble Scheduler for the OpenLambda FaaS Platform. In Proceedings of Work-
shop on Hardware/Software Techniques for Minimizing Data Movement (Min-
Move’18).ACM,NewYork, NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 INTRODUCTION
Functions-as-a-Service (FaaS) cloud platforms enable tenants to de-

ploy and execute functions on the cloud, without having to worry

about server provisioning. In a FaaS platform, cloud functions are
(typically) small, stateless tasks, with a single functional responsibil-

ity, and are triggered by events. The FaaS cloud provider manages

the infrastructure and other operational concerns, enabling develop-

ers to easily deploy, monitor, and invoke cloud functions [16]. These

functions can be executed on any of a pool of servers managed by

the provider and potentially shared between the tenants.

One proposed optimization for FaaS platforms is to cache re-

quired packages or libraries at the worker nodes instead of bundling

them with the functions, thus making the functions more lean and

Min-Move’18, March 2018, Williamsburg, VA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

as a result, significantly reducing their launch time [2, 11]. How-

ever, existing FaaS schedulers are vanilla load balancers that do not

attempt to maximize package-locality when assigning functions

to workers. For this reason, the development of new scheduling

algorithms for FaaS platforms is considered an important challenge

in the serverless computing domain [2, 6, 15, 16].

As researchers start tackling the problem of package-aware sched-
uling and other near-data scheduling optimizations for FaaS plat-

forms, having a common platform on top of which to implement and

evaluate their ideas would be beneficial, as this would encourage

fair comparisons between different solutions, facilitate experiment

reproducibility and reduce development time.

Towards this goal, we have implemented olscheduler, a sim-

ple and extensible function scheduler for the OpenLambda FaaS

platform. Our scheduler has 331 lines of Go code, and is simpler

to modify and extend than the ngninx load balancer used by the

original OpenLambda. olscheduler comes with three scheduling

policies (random, round-robin and least-loaded), and exposes useful

information about the platform to the system developer, so that

additional scheduling policies can be easily implemented.

To illustrate the usefulness of olscheduler, we added a simple

package-aware scheduling algorithm that seeks to improve package-

affinity while avoiding unmanageable worker overload. We were

able to implement this algorithm with only 46 additional lines of

code (LOCs). Preliminary simulation results show that this simple

approach can cut the function latency by more than 65%. In the

future, we will validate our results in real cloud experiments.

We have released our code so that others can easily implement

new scheduling algorithms for OpenLambda
1
.

2 BACKGROUND
A Function-as-a-Service (FaaS) cloud platform supports the cre-

ation of distributed applications composed by a number of small,

single-task, cloud functions. These functions run in lightweight

sandbox environments, which run on top of virtual machines. The

sandboxes, runtime environments, and virtual machines are man-

aged by the cloud platform. Thus, a developer can create elastic

cloud applications without having to worry about server provision-

ing and elasticity managers. Examples of FaaS platforms include

OpenLambda
2
, Fission

3
, OpenWhisk

4
, AWS Lambda

5
and Azure

Functions
6
.

1
https://github.com/gtotoy/olscheduler

2
open-lambda.org

3
fission.io

4
openwhisk.apache.org

5
aws.amazon.com/lambda

6
azure.microsoft.com/en-us/services/functions

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/gtotoy/olscheduler
open-lambda.org
fission.io
openwhisk.apache.org
aws.amazon.com/lambda
azure.microsoft.com/en-us/services/functions

Min-Move’18, March 2018, Williamsburg, VA Gustavo Totoy, Edwin F. Boza, and Cristina L. Abad

Figure 1: The OpenLambda architecture [6].

2.1 OpenLambda
OpenLambda is serverless computing platform that supports the

FaaS execution model [6, 7]. Figure 1 shows the OpenLambda ar-

chitecture. In OpenLambda, a developer must upload the code of

her cloud functions to the code store or registry. When a user trig-

gers the execution of cloud functions, a request is sent to the load
balancer, which selects a worker based on the configured load bal-

ancing mechanism. When a worker receives a request, it runs the

cloud function in a sandbox, currently implemented with Docker

containers. The first time a function runs on a worker, the worker

has to contact the code store to get the code of the function; the

code is cached so that this step is not needed in future invocations.

2.2 Function scheduling in OpenLambda
In OpenLambda, the function scheduling (or task of assigning cloud

functions to workers) is performed by nginx, with its role of soft-

ware load balancer. The load balancing methods currently sup-

ported by ngninx are [1]:

• Round-robin: requests are assigned to servers in a round-

robin fashion.

• Least-connected: an incoming request is assigned to the

server with the least number of active connections.

• IP-hash: uses a hash-function map all requests coming from

the same IP address to the same server.

These load balancing methods distribute the load between the

workers, but lack functionality to make intelligent decisions that

seek to, for example, minimize data transfers between workers or

between a worker and an external repository (e.g., a distributed file

system or a repository of packages required by the cloud functions).

2.3 Package caching with Pipsqueak
Oakes et al. [11] recently proposed Pipsqueak, a shared package

cache available at each OpenLambda worker. Pipsqueak seeks to

reduce the start-up time of cloud functions via supporting lean

functions whose required packages are cached at the worker nodes

(see Figure 2). The cache maintains a set of Python interpreters with

packages pre-imported, in a sleeping state. When a cloud function

is assigned to a worker node, it checks if the required packages

are cached. To use a cached entry, Pipsqueak: (1) Wakes up and

forks the corresponding sleeping Python interpreter from the cache,

(2) relocates its child process into the handler container, and (3)

handles the request. If a cloud function requires two packages that

are cached in different sleeping interpreters, then only one can be

used and the missing package must be loaded into the child of that

container (created by step 2 above). To deal with cloud functions

with multiple package dependencies, Pipsqueak supports a tree

cache in which one entry can cache package A, another entry can

cache package B, and a child of either of these entries can cache

both A and B.

Having pre-initialized packages in sleeping containers speeds up

function start-up time because this eliminates the following steps

present in an unoptimized implementation: (1) downloading the

package, (2) installing the package, and (3) importing the package.

The last step also includes the time to initialize the module and its

dependencies. Especially for cloud functions with large libraries,

Figure 2: The Pipsqueak package cache in OpenLambda. Fig-
ure reproduced from [11].

An Extensible Scheduler for the OpenLambda FaaS Platform Min-Move’18, March 2018, Williamsburg, VA

this process can be extremely time consuming, as it can take 4.007s
on average and as much as 12.8s for a large library like Pandas [12].

3 DESIGN AND IMPLEMENTATION
We decided to implement olscheduler using Go, as its primitives

lets the developer easily build high-performant distributed systems.

To facilitate the implementation of future schedulers, olscheduler
exposes functions and data structures that can be used to get the

following information:

(1) Workers: Number and references to the workers.

(2) Per-worker load: Measured as the number of active requests

that each worker is currently handling.

(3) Required packages: The list of required packages, sorted by

size, is exposed for each function call.

(4) Function schemas: Obtained by querying the code repository

and cached in memory.

To get the number of required packages (item 3 above), we ex-

tended the HTTP Post request (cloud function request in Figure 1)

so that it supports receiving the list as an annotation on the func-

tion call. An alternative design would have been to query the cloud

store to get this information; we rejected this idea to avoid an extra

step on the critical path of the function requests.

olscheduler currently supports the following scheduling algo-

rithms:

• Round-robin: Distributes the requests uniformly between

the workers, in round robin fashion.

• Least-loaded: An incoming request is assigned to the worker

that currently has the least number of active requests.

• Random: Distributes requests randomly between the work-

ers, according to user defined worker weights.

The functionality described above was implemented in 331 lines

of code (LOCs). In addition, we have implemented an additional,

package-aware scheduling policy, as described next.

3.1 Package-aware scheduling in olscheduler
To illustrate that olscheduler can be easily extended to implement

a package-aware algorithm, we implemented a variant of an algo-

rithmwe proposed in prior work [2], adapting it so that it is suitable

for the OpenLambda scheduler model: a push-based, centralized,

scheduler with a processor-sharing service discipline (workers).

The algorithm we implemented seeks to maximize cache affinity

(with respect to the packages in the package cache), while avoiding

overloading workers beyond a configurable threshold. The sched-

uler uses hashing to try to assign all tasks that require the same

package to the same worker, to encourage cache affinity. To avoid

overloading a worker to which one or more popular packages map,

a configurable maximum load threshold is used. If the scheduler

cannot achieve affinity without assigning a task to an overloaded

node (defined as one for which its number of active requests has

exceeded a threshold, t), then the scheduler chooses the worker

with the least load. To improve cache affinity while improving load

balance, we apply the power-of-2 choices technique [10], by using

two hashing functions to map a task to a worker; each hash function

maps the task to a different worker, and the task is assigned to the

Algorithm 1: Package-aware scheduler algorithm for Open-

Lambda

Global data: List of workers,W = w1, ...,wn , Hash functions

H1 and H2, maximum load threshold, t
Input: Function, f , list of required packages sorted by

descending package size, P = p1, ...pn
1 if (P is not empty)then

/* Greedily seek affinity w/ large package */

2 for (l = 1, . . . , |P |)do
/* Calculate two possible worker targets */

3 t1 = H1(pl)%|W | + 1
4 t2 = H2(pl)%|W | + 1

/* Select target with least load */

5 if (load(wt1) < load(wt2))then
6 A := t1

7 else
8 A := t2

/* If target is not overloaded, we are done
*/

9 if (load(wA) < t)then
10 Assign f towA
11 return

/* Balance load */

12 Assign f to least loaded worker,wi

least loaded one. Algorithm 1 shows our package-aware scheduling

algorithm for OpenLambda.

With the information exposed by olscheduler, implementing

this policy was straightforward, and took only 46 LOCs.

3.2 Expected Results
We have performed validation tests to make sure our scheduler

works according to our design, and areworking on doing a thorough

evaluation in a public cloud. In order to do so, we first need a suitable

benchmark or workload; as no such benchmark exists, we are in

the process of compiling different cloud functions to be used in our

evaluation.

In the meantime, we implemented both the least-loaded and

the proposed package-aware algorithm in a simulator, with the

following configuration parameters:

• Mean inter-arrival time = 0.1ms (exponentially distributed).

• 1 000 worker nodes; each can run up to 100 functions simul-

taneously (st = 100).

• Distribution of packages popularity: Zipfian (s = 1.1).

• Time to start the packages is exponentially distributed (av-

erage time to start = 4.007s).
• Number of packages required by a function is exponentially

distributed (mean required packages = 3).

• Each worker has a LRU package cache (capacity = 500MB).
• The sizes of the (cacheable) packages is modeled after the

sizes of the packages in the PyPi repository.

• Time to launch a function that requires no packages: 1s .

Min-Move’18, March 2018, Williamsburg, VA Gustavo Totoy, Edwin F. Boza, and Cristina L. Abad

• The running time of a task (after loading required packages)

is exponentially distributed with mean = 100ms .
• Experiment duration: 30 minutes.

• Overload threshold: t = 200.

While the configuration described above represents an artificial

scenario, the configuration values were chosen to closely model

real observed behavior, as reported by related work [6, 8, 11].

Our preliminary results show we can improve the median hit
rate from 51.15% (least-loaded) to 63.52% (Proposed). This has

a direct impact on latency, as shown in Table 1: median latency

improves by 65.8% (Proposed vs. least-loaded), and tail latency

improves by 41.9% (90th percentile). If we compare against a least-

loaded load balancer in an unoptimized platform that does not

cache function packages, our algorithm improves median latency

by 189.9 times.

Table 1: Task latency percentiles (in seconds). Our algorithm
improves latency due to improved cache hit rate.

Algorithm 50th 90th 95th 99th

Least-loaded, no pkg cache 256.42 455.76 480.71 503.72

Least-loaded 3.95 18.53 25.29 40.86

Proposed 1.35 10.76 15.90 28.98

4 RELATEDWORK
We build upon prior work in load balancing for server clusters [5, 9,

10]. Most of this work is specific to the Web server farms, though

these balancing algorithms are easy to extend and apply to FaaS

architectures. In the FaaS domain, industry schedulers—like the

generic nginx and the custom function schedulers for OpenWhish,

Fission–are vanilla load balancers that do not seek to minimize data

movement in the system.

Another line of research is work in task scheduling while trying

to improve data-locality, for example, for the Web [3, 4, 13] and Big

Data processing [17–20] domains.

The near-data scheduling problem arises in frameworks like

Hadoop, where each type of task has different processing rates

on different subsets of servers [18]; tasks that process data that is

stored locally execute the fastest, followed by tasks whose input

data is stored in the same rack, followed by tasks whose input data

is stored remotely (in a different rack). Several near-data schedulers

have been proposed for Hadoop [17, 19, 20]. One thing that has

helped the community propose new schedulers for Hadoop—some

of which have later made it to the Hadoop codebase, like [20]—is

the fact that Hadoop’s design makes it easy to replace the scheduler

with a new algorithm.

Finally, our work joins recent efforts by other researchers in seek-

ing to advance the state-of-the-art in the management of resources

in serverless computing clouds [11, 14, 15].

5 CONCLUSIONS AND FUTUREWORK
Function-as-a-Service platforms—like OpenWhisk, OpenLambda

and Fission—could benefit significantly from intelligent schedulers

that seek to minimize data transfers, as this can be an expensive

step (e.g., reading input data from a distributed file system, or down-

loading and installing packages from a package repository). In this

work, we presented a simple yet extensible function scheduler for

OpenLambda, which can be used as a basis for future research

in smart scheduling for FaaS platforms. In the future we will use

our scheduler to evaluate different package-aware scheduling algo-

rithms.

REFERENCES
[1] Using nginx as HTTP load balancer. Available at: http://nginx.org/en/docs/http/

load_balancing.html.

[2] Abad, C. L., Boza, E. F., and van Eyk, E. Package-aware scheduling of FaaS

functions. In HotCloudPerf workshop, co-located with ACM/SPEC Intl. Conf. Perf.
Eng. (ICPE) (2018).

[3] Cardellini, V., Casalicchio, E., Colajanni, M., and Yu, P. The state of the art

in locally distributed Web-server systems. ACM Comput. Surv. 34, 2 (2002).
[4] Cherkasova, L., and Ponnekanti, S. Optimizing a content-aware load balancing

strategy for shared web hosting service. In Intl. Symp. Model., Anal. and Sim. of
Comp. and Telecomm. Sys. (MASCOTS) (2000).

[5] Gupta, V., Harchol Balter, M., Sigman, K., and Whitt, W. Analysis of Join-

the-Shortest-Queue Routing for Web server farms. Perform. Eval. 64 (2007).
[6] Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-

Dusseau, A., andArpaci-Dusseau, R. Serverless computationwith OpenLambda.

In USENIX Work. Hot Topics in Cloud Comp. (HotCloud) (2016).
[7] Hendrickson, S., Sturdevant, S., Oakes, E., Harter, T., Venkataramani, V.,

Arpaci-Dusseau, A., and Arpaci-Dusseau, R. Serverless computation with

OpenLambda. Usenix ;login: 41.
[8] Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., and Pallickara, S. Serverless

computing: An investigation of factors influencing microservice performance. In

IEEE Intl. Conf. Cloud Eng. (ICPE), to appear (2018).
[9] Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J., and Greenberg, A. Join-Idle-

Queue: A novel load balancing algorithm for dynamically scalable Web services.

Perform. Eval. 68, 11 (2011).
[10] Mitzenmacher, M. The power of two choices in randomized load balancing.

IEEE Trans. Par. Distrib. Sys. 12, 10 (2001).
[11] Oakes, E., Yang, L., Houck, K., Harter, T., Arpaci-Dusseau, A., and Arpaci-

Dusseau, R. Pipsqueak: Lean Lambdas with large libraries. In IEEE Intl. Conf.
Distrib. Comp. Sys. Workshops (ICDCSW) (2017).

[12] Oakes, E., Yang, L., Houck, K., Harter, T., Arpaci-Dusseau, A., and Arpaci-

Dusseau, R. Pipsqueak: Lean Lambdas with large libraries, 2017. (Presentation

given at the) Workshop on Serverless Computing (WoSC).

[13] Pai, V., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenepoel, W.,

and Nahum, E. Locality-aware request distribution in cluster-based network

servers. SIGOPS Oper. Syst. Rev. 32, 5 (1998).
[14] Sampé, J., Sánchez-Artigas, M., García-López, P., and París, G. Data-driven

serverless functions for object storage. In ACM/IFIP/USENIX Middleware (2017).
[15] van Eyk, E., Iosup, A., Abad, C. L., Grohmann, J., and Eismann, S. A SPEC RG

cloud group’s vision on the performance challenges of FaaS cloud architectures.

In ACM/SPEC Intl. Conf. Perf. Eng. (ICPE) (2018).
[16] van Eyk, E., Iosup, A., Seif, S., and Thömmes, M. The SPEC cloud group’s re-

search vision on FaaS and serverless architectures. In Intl. Workshop on Serverless
Comp. (WoSC) (2017).

[17] Wang, W., Zhu, K., Ying, L., Tan, J., and Zhang, L. MapTask scheduling

in MapReduce with data locality: Throughput and heavy-traffic optimality.

IEEE/ACM Trans. Netw. 24, 1 (2016).
[18] Xie, Q., and Lu, Y. Priority algorithm for near-data scheduling: Throughput and

heavy-traffic optimality. In IEEE Conf. Comp. Comm. (INFOCOM) (2015).
[19] Xie, Q., Pundir, M., Lu, Y., Abad, and Campbell. Pandas: Robust locality-aware

scheduling with stochastic delay optimality. IEEE/ACM Trans. Netw. 25, 2 (2017).
[20] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., and

Stoica, I. Delay scheduling: A simple technique for achieving locality and

fairness in cluster scheduling. In European Conf. Comp. Sys. (EuroSys) (2010).

http://nginx.org/en/docs/http/load_balancing.html
http://nginx.org/en/docs/http/load_balancing.html

	Abstract
	1 Introduction
	2 Background
	2.1 OpenLambda
	2.2 Function scheduling in OpenLambda
	2.3 Package caching with Pipsqueak

	3 Design and implementation
	3.1 Package-aware scheduling in olscheduler
	3.2 Expected Results

	4 Related work
	5 Conclusions and Future Work
	References

