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ENERGY COST OF MOVING DATA

Table 1. Technology and circuit projections for processor chip components.

2010 2017
10 nm, high 10 nm,

Process technology 40 nm frequency low voltage
Vop (nominal) o9V 0.75V 0.65V
Frequency target 1.6 GH 2.5 GHz 2 GHz
Double-precision fused-multiply 50 picojoules (pJ) 8.7 pJ 6.5 pJ

add (DFMA) energy
64-bit read from an 8-Kbyte 14 pJ 2.4 pJ 1.8 pJ

static RAM (SRAM)
Wire energy (per transition) 240 femtojoules (fJ) 150 fJ/bit/mm 115 fJ/bit/mm

per bit per mm

Wire energy (256 bits, 10 mm) m 200 pJ 150 pJ

Keckler et al (Nvidia) IEEE Micro Sept 2011
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Moving Data is Expensive but We Often Move Lots of Data

Amount of Data Moved Versus Amount of Data to be Processed

JUAN RUBIO’s Ph. D Dissertation, 2005 (UT ECE)

Query Name

Data set size

0l

Q3

Q6
QL4

Q19

Pricing Summary Report 1.1 GB
Shipping Priority 2.8 GB
Forecasting Revenue Change 585 MB
Promotion Effect 686 MB
Discounted Revenue 902 MB

Data transferred (GB)
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Classification of the Data Transferred (Rubio)
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COMPUTE IN-SITU

Compute in the Caches
Compute in the DRAM
Compute in the Disk

Compute in the core the data is (heterogeneous
cores)

Compute where the data is

Compute in the CPU or the accelerator where the
data is?
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COMPUTE IN-TRANSIT

Compute while moving data from memory to core

Compute in the Memory Controllers

Compute while moving from CPU to GPU or vice
versa

Compute while moving data to accelerators

Laboratory of Computer Architecture, UT Austin




Hierarchical Computing (Rubio Dissertation)
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Hierarchical Computing — Task Decomposition
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Primitives
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Figure 3.3: Individual Primitive. Figure 3.4: Aggregate Primitive.
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Task Mapping

D operation

a operations: 14
n n operation: "1"

type: table scan
inputl: "table orders"
m input2: ""

output: "buffer bl"

operation: "2"

m type: sort

inputl: "buffer bl"

m input2: ""
output: "buffer b2"

operation: "6"
type: merge join
inputl: "buffer b3"
input2: "buffer b5"
output: "buffer b6"

(a) (b)
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Tasks mapped to various layers in the hierarchical

system
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Data Transfer in the Hierarchical Computing
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Speedup of Hierarchical Computing

Speedup over 8x4 CC-NUMA

Q1 Q3 Q6 Q14 Q19
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Technology Developments Better Aligned Now
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Compute Caches

Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David Blaauw, and Reetuparna Das
University of Michigan, Ann Arbor
{shaizeen, sjeloka, arunsub, nsatish, blaauw, reetudas} @umich.edu

Abstract—This paper presents the Compute Cache archi-
tecture that enables in-place computation in caches. Compute
Caches uses emerging bit-line SRAM circuit technology to re-
purpose existing cache elements and transforms them into ac-
tive very large vector computational units. Also, it significantly
reduces the overheads in moving data between different levels
in the cache hierarchy.

Solutions to satisfy new constraints imposed by Compute
Caches such as operand locality are discussed. Also discussed
are simple solutions to problems in integrating them into a
conventional cache hierarchy while preserving properties such
as coherence, consistency, and reliability.

Compute Caches increase performance by 1.9x and reduce
energy by 2.4x for a suite of data-centric applications, includ-
ing text and database query processing, cryptographic kernels,
and in-memory checkpointing. Applications with larger frac-
tion of Compute Cache operations could benefit even more, as
our micro-benchmarks indicate (54x throughput, 9x dynamic
energy savings).

HPCA 2017
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recently fabricated chip [2] demonstrates feasibility of bit-
line computing. They also show a stability of more than
six sigma robustness for Monte Carlo simulations, which is
considered industry standard for robustness against process
variations.

Past processing-in-memory (PIM) solutions proposed to
move processing logic near the cache [4], [S] or main
memory [6], [7]. 3D stacking can make this possible [8].
Compute Caches significantly push the envelope by enabling
in-place processing using existing cache elements. It is an
effective optimization for data-centric applications, where at
least one of the operands (e.g., dictionary in WordCount)
used in computation has cache locality.

Efficiency of Compute Caches arises from two main
sources: massive parallelism and reduced data movement. A
cache is typically organized as a set of sub-arrays; as many

ac hindrodce Af cnh_arrave Adonondina an the rcarhe lousl



Compute Cache Overview
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Compute Cache ISA

Opcode Src1| Src2] Dest Size Description

cc_copy a - b n bli| = alz]

cc_buz a - - n ali] =0

cc_cmp a b r n r[i] = (a[i] == b[i])
cc_search a k r n r[z] = (ali] == k)
cc_and a b C n c[i] = a[i] & bl[i]
cc_or a b C n clz] = (alz] || blz])
cC_Xor a b C n c|z] = ali] & b|z]
cc_clmulX | a b C n c; = ®(alz] & b[7])
cc_not a - b n blz| =!(a|z])

a,b.c.k: addresses rrregister | Vi,z € [1,n], X = [ 64/128/256 |
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Proportion of energy (top) for bulk comparison
operation and area (bottom).
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(a) Scalar Core (b) SIMD Core (c) Compute Cache

Red dot depicts logic capability.




Compute Caches in operation
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Benefit of compute cache

M = 2500 — core

2 700 [Base 32 3 £ cache-access FEEEH

2 600 - CC_L3 mm > 2000 - cache-ic I

o 500 - g 1500 - noc N

(]

= - [}

W0 o 1000 | N

T 300 £ b "

2 © — R 7

2 200 - g 500

. )

3 100 | 0

8 [y] N ™

g 0= - = 4 od
copy compare search logical Q 80

O 20
(i}

a) Throughput

total energy (nJ)

4000 -
3500 -
3000 -

2500 | [

2000 -
1500 -
1000 -
500 -

uncore-static ]
core-static [N
uncore-dynamic I
core-dynamic [

b) Dynamic energy c) Total energy

Base_ 32: supports 32-byte SIMD loads and stores

CC: compute cache




Dynamic Associative Memory - Lipovski

Application of Processor-in-memory Chips
to Full-text Database Retrieval

G. Jack Lipovski
Department of E.C.E, University of Texas
Austin Texas

Clement Yu
Department of Computer Science, University of Illinois at Chicago Circl

Chicago Illinois
Abstract

Dynamic Associative Access Memory (DAAM) chips are processor-in-memory
large number of small processing elements are put in a DRAM s sense amg
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DAAM Chips — Dynamic Associative Memory -

Lipovski
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Lipovski Patents

G. J. Lipovski, System and Method for Searching a Data
Base Using a Content Searchable Memory, May 1998

K. Liu, G. J. Lipovski and C. Yu, “Efficient Processing of
Queries in Full-text Search Using Associative Memory”

G. J. Lipovski, “Parallel Computer Within Dynamic
Random Access Memory”, June 1998

G. J. Lipovski, “Dynamic Systolic Associative Memory
Chip”, International Symposium on Application Specific
Array Processors, pp. 481-492, 1990, Sep

G. J. Lipovski, “Dynamic Associative Memory with
Login-In-Refresh, January 1991
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Dynamic Associative Memory - Lipovski

Application of Processor-in-memory Chips
to Full-text Database Retrieval

G. Jack Lipovski
Department of E.C.E, University of Texas
Austin Texas

Clement Yu
Department of Computer Science, University of Illinois at Chicago Circl

Chicago Illinois
Abstract

Dynamic Associative Access Memory (DAAM) chips are processor-in-memory
large number of small processing elements are put in a DRAM s sense amg

1999 IEEE International Workshop on Memory
Technology, Design and Testing
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News from Oracle at the Hot Chips Symposium ‘13

Software in Silicon: Extending Our Leadership

ACQUIRE FOCUS COMPETE ACCELERATE OPTIMIZE

Oracle
100% performance
increase each generation

SPARC T5
Database & Java

Accelerators

SPARC T4

IBM Power & x86
. 30-50% performance
SPARC T3 increase

each generation

SPARC T-Series
2010 2012 2013
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Oracle at Hot Chips 2013 Conference

On-Chip Accelerators for Database

Today’s Microprocessors 2014 Microprocessor
Execution Code Execution Code
Get target from memory Give range to scan and search value
Compare to search value Done

Build results list
Do for each target in memory

Consequence Benefit
Core busy for entire scan Core completely freed up
Nothing else can happen Other code can execute
Slow and expensive Breakthrough performance and efficiency

ORACLE



SPARC M7 Data Accelerator
« SWIS (Software in Silicon)
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SPARC M7 Data Accelerator
= SWIS (Software in Silicon)

L3 Cache
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L3 Cache
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SPARC DAX Accelerator Pipeline

The first stage is decompression.

Uncompressed data is then unpacked (extract)

Next joins (called Bloom Filter); evaluates conditions such as less
than, greater than, or equal to; or performs matches based on an
existing result of bit vectors.

Resulting data is expanded via repeating decompressions.

Then output is packed (if it was expanded or unpacked initially)
can also be pipelined either into another DAX / L3 cache /DRAM

Very specialized pipeline; equivalent to having 32 extra cores for
queries and 64 extra cores for decompression; very cost effective.

31 Laboratory of Computer Architecture, UT Austin




SPARC M7 Data Accelerator
= SWIS (Software in Silicon)

L3 Cache

.-
ozIp

decompress

: SRAM

p— . Predicate Filter Rows
Dictionary i I Evaluation I by Bit Vector

& Lookup Run Length

Unpack Input
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J Tables Expand
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L3 Cache
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COMPUTE IN-TRANSIT

ittt

Avoid Allocating and St
in DRAM

Data transferred (GB)

o N A OO @

Simply move data to the Consuming Element
Systolic Processing Concepts

Perform an Operation as part of data transfer
Fixed function or limited programmable

Scatter-gather, Address Mapping Transformations,
Reductions, Projections

Simple integer units or small overhead hardware

Programming models to support

Laboratory of Computer Architecture, UT Austin




PIM Taxonomy

[ Logic in Memory

[ Software-visible ]

| Fixed-Function Operations |

Non-Compute Bounded Operands Compound Programmable

Memory controllers Reductions Scatter/gather, Memcpy cPU
Built-in self test Load-op-store Layout transformation APU, GPGPU
ECC and sparing Fixed-width vector ops Search, Sort Microcontroller
In-stack caching Atomics Combined operations FPGA
In-stack prefetch
| NVRAM management | Compression DSP
. e . Network es50rs
Signature matching s

A Processing-in-Memory Taxonomy and a Case for Studying Fixed-function PIM

Gabriel H. Loh Nuwan Jayasena Mark H. Oskin Mark Nutter David Roberts Mitesh Meswani Dong Ping Zhang Mike Ignatowski
AMD Research — Advanced Micro Devices, Inc.
{gabriel.loh, nuwan.jayasena, mark.oskin, mark.nutter, david.roberts, mitesh.meswani, dongping.zhang, mike.ignatowski } @amd.com




CHIPS THAT REMEMBER AND COMPUTE (ISCA 97 ISCA 98)

IRAM (Berkeley)
EXECUBE (Kogge)

FlexRAM (Torrellas)
Yan Solihin’'s HPCA 2001 Paper

DAAM Memory Chips (Lipovski)
Active Pages (Oskin, ISCA 1998)

PIM Enabling Instructions (PEIs) (Onur Mutlu ISCA 2015)

Active Disk (ASPLOS 1998)

| Laboratory of Computer Architecture, UT Austin




Challenges for PIMs

36

Locality and Data Reuse is the main reason why
computing in memory often does not yield
performance benefits

Memory is still slow

Die-stacked DRAM is still DRAM and slow like
DRAM

If data reuse, temporary creation and reuse,
challenging to get performance from integrating
compute with slow memory

Laboratory of Computer Architecture, UT Austin




Cache energy (pJ) per cache-block (64-byte)
(Compute Cache Paper)

m-mm-

2852 2452 1340 3692 1340 1672
L2 1154 802 242 608 1396 608 704
L1 375 295 186 324 561 324 387




Task Mapping Challenges
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CONCLUDING REMARKS

Computing in Situ offers quite some potential

Quite a lot of Passion went into PIM in its earlier
waves

Several technology Challenges and Market factors
Computing in Transit is interesting
Proliferation of Accelerators

Instead of Move as little as possible, focus on
move what benefits from the move

Be in the right place at the right time

Software Support is key for Success
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Thank You! Questions?

Laboratory for Computer Architecture (LCA)
The University of Texas at Austin
lca.ece.utexas.edu
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