THE UNIVERSITY OF TEXAS AT AUSTIN.

[SEEV=ECE

ELECTRICAL & COMPUTER ENGINEERING

Computing In-Situ and In-Transit

Lizy K. John
The University of Texas at Austin

ENERGY COST OF MOVING DATA

Table 1. Technology and circuit projections for processor chip components.

2010 2017
10 nm, high 10 nm,

Process technology 40 nm frequency low voltage
Vop (nominal) o9V 0.75V 0.65V
Frequency target 1.6 GH 2.5 GHz 2 GHz
Double-precision fused-multiply 50 picojoules (pJ) 8.7 pJ 6.5 pJ

add (DFMA) energy
64-bit read from an 8-Kbyte 14 pJ 2.4 pJ 1.8 pJ

static RAM (SRAM)
Wire energy (per transition) 240 femtojoules (fJ) 150 fJ/bit/mm 115 fJ/bit/mm

per bit per mm

Wire energy (256 bits, 10 mm) m 200 pJ 150 pJ

Keckler et al (Nvidia) IEEE Micro Sept 2011

Laboratory of Computer Architecture, UT Austin

Moving Data is Expensive but We Often Move Lots of Data

Amount of Data Moved Versus Amount of Data to be Processed

JUAN RUBIO’s Ph. D Dissertation, 2005 (UT ECE)

Query Name

Data set size

0l

Q3

Q6
QL4

Q19

Pricing Summary Report 1.1 GB
Shipping Priority 2.8 GB
Forecasting Revenue Change 585 MB
Promotion Effect 686 MB
Discounted Revenue 902 MB

Data transferred (GB)

10

D oo
1 I L

=N
| -

Laboratory of Computer Architecture, UT Austin

Q1

Q3

Qb

Q14

Q19

& uniprocessor

O 4-way SMP

= 2x4 CC-NUMA
m 8x4 CC-NUMA

== (ataset

Classification of the Data Transferred (Rubio)

10
) i
T) 8]
:§ | B coherency
= 6 O temporary
< 7 capacity
E 4 _ M page padding
‘2 5 ,_| Ol data set
a i

0

Laboratory of Computer Architecture, UT Austin

COMPUTE IN-SITU

Compute in the Caches
Compute in the DRAM
Compute in the Disk

Compute in the core the data is (heterogeneous
cores)

Compute where the data is

Compute in the CPU or the accelerator where the
data is?

Laboratory of Computer Architecture, UT Austin

COMPUTE IN-TRANSIT

Compute while moving data from memory to core

Compute in the Memory Controllers

Compute while moving from CPU to GPU or vice
versa

Compute while moving data to accelerators

Laboratory of Computer Architecture, UT Austin

Hierarchical Computing (Rubio Dissertation)

Computing

element
Layerl S
SERNER e
S Storage

| module
§ [] Node

SRR

R,
e

e e v —

Layer2

S

Layer3

BRSEm
) 5

L
o
o
LA
e
R,
e
o
Ll
=
e
o o

W
1
W
1

e, ’5

Layer A

{§§ = &

Laboratory of Computer Architecture, UT Austin

G
e

i
%f o
o

e,
R
.
Cemen
e
e
Qi

C
CRE

2

"

2508

o

. "r.\
R
o :f?::af

2

Hierarchical Computing — Task Decomposition

Computing
Layerl {1} element
|
4 t T h
11— 5%
Layer {1} < 71 6= - Layer, {2}
3% 71%
4i- 8-

~————
—~—————

L)
(" (BATA) ! @ATA))
S

I !
Layer3{1,2}-< § §§ §

N J

8 Laboratory of Computer Architecture, UT Austin

- Layer3 {34}

Primitives

T-|)

2-
3%
4i-

61—

7%

8-

Computing element
* Data match

e

6 -

7%

8.-

= Computing element
* Data match

Figure 3.3: Individual Primitive. Figure 3.4: Aggregate Primitive.

9 Laboratory of Computer Architecture, UT Austin

Task Mapping

D operation

a operations: 14
n n operation: "1"

type: table scan
inputl: "table orders"
m input2: ""

output: "buffer bl"

operation: "2"

m type: sort

inputl: "buffer bl"

m input2: ""
output: "buffer b2"

operation: "6"
type: merge join
inputl: "buffer b3"
input2: "buffer b5"
output: "buffer b6"

(a) (b)

Laboratory of Computer Architecture, UT Austin

Tasks mapped to various layers in the hierarchical

system

[T 710)
am B .3 (3)
i — (2) "97 9
ey | 580 0L (®) ()
| J' | 5

g4) 9 1 8_
Disk v 6 @_ g

|___Z AR
s (1)
_ 2
present
F C) Current operation

o~ — -

l \, Scheduled operation

1 Laboratory of Computer Architecture, UT Austin

Data Transfer in the Hierarchical Computing

%* 8
—t 5 | @ 2x4 CC-NUMA
@ = HC-1-6-0
E] o HC-1-0-6
2 4 o HC-1-1-6
i - = HC-1-2-4
= 92— == dataset
=
2 -
0

Q1 Q3 Q6 Q14 Q19

Laboratory of Computer Architecture, UT Austin

Speedup of Hierarchical Computing

Speedup over 8x4 CC-NUMA

Q1 Q3 Q6 Q14 Q19

Laboratory of Computer Architecture, UT Austin

mm HC-1-5-25
== HC-1-6-24

Technology Developments Better Aligned Now

Computing
L element
ayer, o |
L Storage
[] Node

1

SRR

R,
e

Layer2

S

|
|

o

!
e

s

Layer3

“
e
‘.:-'.r'

[
oy
.

R

s
o
“
LA
e
e,
o

|
|
|
|

W
1
W
W
1

o
7
R
;5

2
o
e

o
e

Layer A

.

2
T
.

e |

s
o

S
-

o

e

C
CRE

"'_"ﬁ-ﬁ’

oo en R,
i
%

e
s 5"‘
51,.‘-'*.-'
"
o

7
e

e
o
O
o
:;’ﬁ
i
o

{
{§§ = &
{

Laboratory of Computer Architecture, UT Austin

Compute Caches

Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David Blaauw, and Reetuparna Das
University of Michigan, Ann Arbor
{shaizeen, sjeloka, arunsub, nsatish, blaauw, reetudas} @umich.edu

Abstract—This paper presents the Compute Cache archi-
tecture that enables in-place computation in caches. Compute
Caches uses emerging bit-line SRAM circuit technology to re-
purpose existing cache elements and transforms them into ac-
tive very large vector computational units. Also, it significantly
reduces the overheads in moving data between different levels
in the cache hierarchy.

Solutions to satisfy new constraints imposed by Compute
Caches such as operand locality are discussed. Also discussed
are simple solutions to problems in integrating them into a
conventional cache hierarchy while preserving properties such
as coherence, consistency, and reliability.

Compute Caches increase performance by 1.9x and reduce
energy by 2.4x for a suite of data-centric applications, includ-
ing text and database query processing, cryptographic kernels,
and in-memory checkpointing. Applications with larger frac-
tion of Compute Cache operations could benefit even more, as
our micro-benchmarks indicate (54x throughput, 9x dynamic
energy savings).

HPCA 2017

15 Laboratory of Computer Architecture, UT Austin

recently fabricated chip [2] demonstrates feasibility of bit-
line computing. They also show a stability of more than
six sigma robustness for Monte Carlo simulations, which is
considered industry standard for robustness against process
variations.

Past processing-in-memory (PIM) solutions proposed to
move processing logic near the cache [4], [S] or main
memory [6], [7]. 3D stacking can make this possible [8].
Compute Caches significantly push the envelope by enabling
in-place processing using existing cache elements. It is an
effective optimization for data-centric applications, where at
least one of the operands (e.g., dictionary in WordCount)
used in computation has cache locality.

Efficiency of Compute Caches arises from two main
sources: massive parallelism and reduced data movement. A
cache is typically organized as a set of sub-arrays; as many

ac hindrodce Af cnh_arrave Adonondina an the rcarhe lousl

Compute Cache Overview

(2\ (-\
- . / Bit-line Word-line
! Cache Controller , *
/ : / — RN BLBO BLO BLBn BLn
L1$ s | Sub-array i RN ﬁ- !
! K #(— WL 'ﬁ'
| H-Tree o 1111 B : i
Lzs L2$ " o ‘» I I I I I ‘- s | wssssssssm] -
USRS rred wi ok
. Vref
\ K Sense-ampv YY \ 4 :
Interconnect * v\v
=AopB WLi NOR WLj WLi AND WLj

L3$-Sliced - L3S-Slice7

(a) (b) (c)

(a) Cache hierarchy. (b) Cache Geometry (c) In-place
compute in a sub-array.

Compute Cache ISA

Opcode Src1| Src2] Dest Size Description

cc_copy a - b n bli| = alz]

cc_buz a - - n ali] =0

cc_cmp a b r n r[i] = (a[i] == b[i])
cc_search a k r n r[z] = (ali] == k)
cc_and a b C n c[i] = a[i] & bl[i]
cc_or a b C n clz] = (alz] || blz])
cC_Xor a b C n c|z] = ali] & b|z]
cc_clmulX | a b C n c; = ®(alz] & b[7])
cc_not a - b n blz| =!(a|z])

a,b.c.k: addresses rrregister | Vi,z € [1,n], X = [64/128/256 |

Laboratory of Computer Architecture, UT Austin

Proportion of energy (top) for bulk comparison
operation and area (bottom).

W core Malu ' data-mov

W

e0eo0o0 0o
e00o0 00
e00o0 00
R

Cache Cache Cache
e00o0 o0 o0
e0e0o0 00
e000 00
e000 00

(a) Scalar Core (b) SIMD Core (c) Compute Cache

Red dot depicts logic capability.

Compute Caches in operation

cc_and A, B, C, 8

-1 CORE * 1. Core issues cc_and
7. L1 controller notifies 4 \

- - l'
completion of operation !
I

I

1

..o L1 controller
Y
\
\

'I

v 2. L1 forwards operation to L2

to Core Set0
D
'I/ free
free
6. L3 notifies L1 ;

-
- ~

4 I
- ‘\
‘s--—

~
.Q--"

3. L2 writebacks B to L3,
“forwards operation to L3

—
’ .\\

~
~‘--‘

Set0
@ B: clean

A

5. L3 performs operation A clean

Memory

ﬂ*

4. L3 fetches C from memory

Benefit of compute cache

M = 2500 — core

2 700 [Base 32 3 £ cache-access FEEEH

2 600 - CC_L3 mm > 2000 - cache-ic I

o 500 - g 1500 - noc N

(]

= - [}

W0 o 1000 | N

T 300 £ b "

2 © — R 7

2 200 - g 500

.)

3 100 | 0

8 [y] N ™

g 0= - = 4 od
copy compare search logical Q 80

O 20
(i}

a) Throughput

total energy (nJ)

4000 -
3500 -
3000 -

2500 | [

2000 -
1500 -
1000 -
500 -

uncore-static]
core-static [N
uncore-dynamic I
core-dynamic [

b) Dynamic energy c) Total energy

Base_ 32: supports 32-byte SIMD loads and stores

CC: compute cache

Dynamic Associative Memory - Lipovski

Application of Processor-in-memory Chips
to Full-text Database Retrieval

G. Jack Lipovski
Department of E.C.E, University of Texas
Austin Texas

Clement Yu
Department of Computer Science, University of Illinois at Chicago Circl

Chicago Illinois
Abstract

Dynamic Associative Access Memory (DAAM) chips are processor-in-memory
large number of small processing elements are put in a DRAM s sense amg

Laboratory of Computer Architecture, UT Austin

DAAM Chips — Dynamic Associative Memory -

Lipovski
sense amp input Shift !
N logic \
~ adder
N C
storage —J > =
. N /_
AN ‘)o_ q N\
N I

data bus sense amp

22

Laboratory of Computer Architecture, UT Austin

input comparator |
logis e

bit

Ty

D
L 1~ SS——FaParal

| US005694406A
*
United States Patent (9 111 Patent Number: 5,694,406
Lipovski 451 Date of Patent: Dec. 2, 1997
[54] PARALLEL ASSOCIATIVE PROCESSOR OTHER PUBLICATIONS
FORMED FROM MODIFIED DRAM Bush, “As We May Think,” Atlantic Monthly, pp. 101-108
[75] Inventor: G. Jack Lipovski, Austin, Tex. (Jul. 1947). o) o
Lee, “Intercommunicating Cells, Basis for a Distributed
[73] Assignee: Board of Regents, the University of Logic Computer,” Proc. EJCC, pp. 130-136, 192 (1962).
Texas System, Austin, Tex. Lee et al, “A Content Addressable Distributed Logic
Memory with Applications to Information Retrieval,” Pro-
) ceedings of the IEEE, vol. 51, pp. 924-932 (Jun. 1963).
21] Appl No.: 695,125 Crane et al., “Bulk Processing in Distributed Logic
[22] Filed: Aug. 5, 1996 Memory,” IEEETC, vol. EC-14, pp. 186-196 (Apr. 1965).
Slotnick, “Logic Per Track Devices,” Advances in Comput-
Related U.S. Application Data ers, pp. 291-296 (1971).
M. Batcher, “The Flip Network in Staran,” Proc 1976 Int’l
[63] Continuation of Ser. No. 237,225, May 2, 1994, which is a Conf. on Parallel Processing, pp. 65-71 (Aug. 1976).
c‘;:licﬁhm!aﬁon of Ser. No. %3&44;’ 0;;9%116 9?%3’ ab?:d?gs Lipovski, “Architectural Features of CASSM: A Context
aband moo;&tﬁa?sog Continmation of Ser No. 577001, Addressed Segment Sequential Memory,” Proceedings of
Sep. 5, 1990, Pat. No. 5,184,325, which is a continuation- fhe 5th ISCA, pp. 31-38 (Apr. 3-5, 1978).
in-part of Ser. No. 321,847, Mar. 10, 1989, Pat. No. 4,989, Bray et al., “Data Base Computers,” pp. 106-120 (D.C.
180. Heath & Co. 1979).
[51] ot CLE oo . GO6F 11/00 Hollaar, “Text Retrieval Computers,” Computer, vol. 12, No.
| 3, pp. 40-52 (1979).
[52] ULS. Clh ocirinnnississssisnisssssansisssssssissssssassnsans 371/51.1 h N
[58] Field of Search ... 365/189.07, 189.02, chs et al., “Developing Pixel Planes, A Smart Memory-

Based Raster Graphics System,” 1982 Conference on

e e e Y e

24

Ui
i§ i
] !
| i
it i1

P i1
1 |
(! [1

US005758148A
United States Patent 9 (111 Patent Number: 5,758,148
Lipovski 451 Date of Patent: May 26, 1998
[54] SYSTEM AND METHOD FOR SEARCHING A 4716,552 12/1987 Maltel et al. ...cocemveeuremrensenens 365222
DATA BASE USING A CONTENT- 4718041 1/1988 Baglee et al.corermrernn 365/185.22
M 4747072 5/1988 Robinson et al.cocwceres 395/428
SEARCHABLE MEMORY 4748439 5/1988 Robinson et al. ..es 340/146.2
. . . 4749887 6/1988 Sanwo ef al. .uuveieemseossenriorserneenne 326755
[75) Inventor: G. Jack Lipovski. Austin, Tex. 4775810 10/1988 SUzuki € al. .ooorroeeressrssininn 306/55
. e 4782.459 1171988 JORDSION veuruusuvessensuensersnsnnes 364/724.19
[73] Assignee: 2"""’ S"f Regents, the University of 4783.649 11/1988 Fuchs et al. ..ououseeurseessserssssesns 365/189
exas System. Austin. Tex. 4794550 12/1988 GrEEDDEIBET weorerreeeerecssosimsseesen 365/49
[21] Appl No.: 987,008 (List continued on next page.)
[22] Filed: Dec. 7, 1992 OTHER PUBLICATIONS
Bush, “As We May Think.” Atlantic Monthly. pp. 101-108
Related U.S. Application Data (Jul. 1947).
[63] Cont'muation-in-part of Ser. No. 577,991, Sep 5, 1990, Pat. (List continued on next Page‘)
No. 5,184 325, which is a continuation-in-part of Ser. No.
321,847, Mar. 10, 1989, Pat. No. 4,989,180. Primary Examiner—Tod R. Swann
[S1] Int CLS ... oo e esenenesrs GOG6F 7/02 Assistant Examiner—]J. Peikari
(521 US. Cl oo 395/606; 305/433; 305/435 Attormey, Agent, or Firm—Louis J. Hoffman

rcoy

E2nald AF Canmab 20K8/478 ANN

Laboratory of Computer Architecture, UT Austin

rsm

ARQCTRACT

Lipovski Patents

G. J. Lipovski, System and Method for Searching a Data
Base Using a Content Searchable Memory, May 1998

K. Liu, G. J. Lipovski and C. Yu, “Efficient Processing of
Queries in Full-text Search Using Associative Memory”

G. J. Lipovski, “Parallel Computer Within Dynamic
Random Access Memory”, June 1998

G. J. Lipovski, “Dynamic Systolic Associative Memory
Chip”, International Symposium on Application Specific
Array Processors, pp. 481-492, 1990, Sep

G. J. Lipovski, “Dynamic Associative Memory with
Login-In-Refresh, January 1991

Laboratory of Computer Architecture, UT Austin

Dynamic Associative Memory - Lipovski

Application of Processor-in-memory Chips
to Full-text Database Retrieval

G. Jack Lipovski
Department of E.C.E, University of Texas
Austin Texas

Clement Yu
Department of Computer Science, University of Illinois at Chicago Circl

Chicago Illinois
Abstract

Dynamic Associative Access Memory (DAAM) chips are processor-in-memory
large number of small processing elements are put in a DRAM s sense amg

1999 IEEE International Workshop on Memory
Technology, Design and Testing

Laboratory of Computer Architecture, UT Austin

News from Oracle at the Hot Chips Symposium ‘13

Software in Silicon: Extending Our Leadership

ACQUIRE FOCUS COMPETE ACCELERATE OPTIMIZE

Oracle
100% performance
increase each generation

SPARC T5
Database & Java

Accelerators

SPARC T4

IBM Power & x86
. 30-50% performance
SPARC T3 increase

each generation

SPARC T-Series
2010 2012 2013

27 Laboratory of Computer Architecture, UT Austin

Oracle at Hot Chips 2013 Conference

On-Chip Accelerators for Database

Today’s Microprocessors 2014 Microprocessor
Execution Code Execution Code
Get target from memory Give range to scan and search value
Compare to search value Done

Build results list
Do for each target in memory

Consequence Benefit
Core busy for entire scan Core completely freed up
Nothing else can happen Other code can execute
Slow and expensive Breakthrough performance and efficiency

ORACLE

SPARC M7 Data Accelerator
« SWIS (Software in Silicon)

1/0 Links (IL)
Coherence/Scalability Links (CL, SL)

COTCTICTCI) (CATCo[CETCT CE [COCTOICTT) [SI2[CI3ICTAICTS
L0 LA 0 | | T L IR AR RE B RN EARNE RN
208 L208 L1208 L2009 Coherence L1208 208 L1208 208
1218 1218 s L21S 1218
L3$ 8 MB L3SBMB | cacheunts | L3S 8MB L3$ 8 MB
A X
DAX

On-Chip Network

DAX
DA

L3$ 8 MB L3$8MB || Conerence L3$ 8 MB L3 8 MB
L218 L21§ _and Non- 1213 121§
120 1205 § L1208 L2DS | Cechenits § (208 205 M L20S L2DS
(LN N (| [A I uuu U Uy

. g . . l'.'.-

Coherence/Scalability Links (CL, SL)
1/O Links (IL)

| Laboratory of Computer Architecture, UT Austin

SPARC M7 Data Accelerator
= SWIS (Software in Silicon)

L3 Cache

.-
ozIp

decompress

: SRAM

p— . Predicate Filter Rows
Dictionary i I Evaluation I by Bit Vector

& Lookup Run Length

Unpack Input

MPA D WTTE CRNNIY

J Tables Expand
¢ A | Pack
Output

L3 Cache

Laboratory of Computer Architecture, UT Austin

SPARC DAX Accelerator Pipeline

The first stage is decompression.

Uncompressed data is then unpacked (extract)

Next joins (called Bloom Filter); evaluates conditions such as less
than, greater than, or equal to; or performs matches based on an
existing result of bit vectors.

Resulting data is expanded via repeating decompressions.

Then output is packed (if it was expanded or unpacked initially)
can also be pipelined either into another DAX / L3 cache /DRAM

Very specialized pipeline; equivalent to having 32 extra cores for
queries and 64 extra cores for decompression; very cost effective.

31 Laboratory of Computer Architecture, UT Austin

SPARC M7 Data Accelerator
= SWIS (Software in Silicon)

L3 Cache

.-
ozIp

decompress

: SRAM

p— . Predicate Filter Rows
Dictionary i I Evaluation I by Bit Vector

& Lookup Run Length

Unpack Input

MPA D WTTE CRNNIY

J Tables Expand
¢ A | Pack
Output

L3 Cache

Laboratory of Computer Architecture, UT Austin

NI v

[coherency

O temporary
capacity

— = M page padding

__% O data set
' = =

Q1 Q3 Q6 Q14 Q19

COMPUTE IN-TRANSIT

ittt

Avoid Allocating and St
in DRAM

Data transferred (GB)

o N A OO @

Simply move data to the Consuming Element
Systolic Processing Concepts

Perform an Operation as part of data transfer
Fixed function or limited programmable

Scatter-gather, Address Mapping Transformations,
Reductions, Projections

Simple integer units or small overhead hardware

Programming models to support

Laboratory of Computer Architecture, UT Austin

PIM Taxonomy

[Logic in Memory

[Software-visible]

| Fixed-Function Operations |

Non-Compute Bounded Operands Compound Programmable

Memory controllers Reductions Scatter/gather, Memcpy cPU
Built-in self test Load-op-store Layout transformation APU, GPGPU
ECC and sparing Fixed-width vector ops Search, Sort Microcontroller
In-stack caching Atomics Combined operations FPGA
In-stack prefetch
| NVRAM management | Compression DSP
. e . Network es50rs
Signature matching s

A Processing-in-Memory Taxonomy and a Case for Studying Fixed-function PIM

Gabriel H. Loh Nuwan Jayasena Mark H. Oskin Mark Nutter David Roberts Mitesh Meswani Dong Ping Zhang Mike Ignatowski
AMD Research — Advanced Micro Devices, Inc.
{gabriel.loh, nuwan.jayasena, mark.oskin, mark.nutter, david.roberts, mitesh.meswani, dongping.zhang, mike.ignatowski } @amd.com

CHIPS THAT REMEMBER AND COMPUTE (ISCA 97 ISCA 98)

IRAM (Berkeley)
EXECUBE (Kogge)

FlexRAM (Torrellas)
Yan Solihin’'s HPCA 2001 Paper

DAAM Memory Chips (Lipovski)
Active Pages (Oskin, ISCA 1998)

PIM Enabling Instructions (PEIs) (Onur Mutlu ISCA 2015)

Active Disk (ASPLOS 1998)

| Laboratory of Computer Architecture, UT Austin

Challenges for PIMs

36

Locality and Data Reuse is the main reason why
computing in memory often does not yield
performance benefits

Memory is still slow

Die-stacked DRAM is still DRAM and slow like
DRAM

If data reuse, temporary creation and reuse,
challenging to get performance from integrating
compute with slow memory

Laboratory of Computer Architecture, UT Austin

Cache energy (pJ) per cache-block (64-byte)
(Compute Cache Paper)

m-mm-

2852 2452 1340 3692 1340 1672
L2 1154 802 242 608 1396 608 704
L1 375 295 186 324 561 324 387

Task Mapping Challenges

a o
I
|

C 31 C 10)

Mol TR (3)
i

ENEDRENED
W R L C NG R €

ReD
I 1
Disk e - -~

|___Z AR
s (1)
_ 2]
present
F C) Current operation

o~ ——

l \, Scheduled operation

38 Laboratory of Computer Architecture, UT Austin

CONCLUDING REMARKS

Computing in Situ offers quite some potential

Quite a lot of Passion went into PIM in its earlier
waves

Several technology Challenges and Market factors
Computing in Transit is interesting
Proliferation of Accelerators

Instead of Move as little as possible, focus on
move what benefits from the move

Be in the right place at the right time

Software Support is key for Success

39 Laboratory of Computer Architecture, UT Austin

Thank You! Questions?

Laboratory for Computer Architecture (LCA)
The University of Texas at Austin
lca.ece.utexas.edu

Laboratory of Computer Architecture, UT Austin

