When Moving Data is Expensive:
What We can Learn from High Gas
Prices

Yan Solihin
Professor, ECE, NCSU

Program Director
Computer Systems Research (CSR)
Secure and Trustworthy Cyberspace (SaTC)
Scalable Parallelism in the eXtreme (SPX)
NSF

Published December 2015

Chapman & Hall/CRC

Fundamentals of
Parallel
ULTICO
Architecture

v

Yan Solihin .

- ///////////

4
4
."“‘w@ ; y
~ lf rs
e
L&
L\
@
4 2
i ~.

Let’s Revisit CPU-Memory Gap

e 1999
— CPU speed grows at 55%/year 2 GHz
— Memory speed grows at 7%/year L1 Cache | 273 cycles
— Processing in Memory research born L2 Cache | 10-20 cycles
e Put simple processor in DRAM chips R —

* Berkeley IRAM, lllinois FlexRAM, etc. - - - -

— No industry adoption 100-200 cycles
e Caches are good enough
 DRAM chip has no budget for processing

14 Years Later (2013)

— Processor speed growth stalled around 2005-2007
— Multicore design proliferated
— Cache hierarchy got deeper (for scaling purpose)

e e access e

L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 256KB-1MB L2 Cache (SRAM)
10-20 cycle access time

——

1 ! ! ! ! ! ! ! ! ! ! ! |
V3 o L3 o L3 ! L3 o L3 4! L3 4t L3 4! L3 ' L3 4! L3 ' L3 ! L3
! ! ! ! ! ! ! ! ! ! ! ! 1 8-80MB L3 Cache,

1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 20-50 cycle access time

30-100MB L4 Cache,
L4 Cache 50-80 cycle access time
4-32GB Main Memory
Main Memory 120-400 cycle access time

What’s in Store in 20277

* Yan’s crystal ball

* Trend 1: Increasing demand
for memory

— In-memory databases, key-value
stores, data analytics

— Servers have limited scope for -
memory expansion

* Limited by the number of memory
ports on a rack unit
N . . r)/\,/ ;
* Limited by DRAM scaling => must @7 hspacivaio
rely on NVM —

Aspect Ratio = Hb

Source: S. J. Hong (Hynix), IEDM 2010

50 (] 3
Technology Node (nm)

apop abe.0)g Jo oney padsy

* Trend 2: Resource disaggregation
— Servers have poor resource utilization
— Interconnection has become faster
— Expand memory with external memory pools

e How connected? Interconnect becomes the bottleneck
— CCIX, GenZ, PCle with MMIO

e Silicon Photonics?

* Trend 1 and 2 point to rack-scale server
architectures

Rack-Scale Server

Storage
Unii

@
° FABRIC

-~ N (

cou | Key points:

1\

|- CPU-Memory Gap is alive and well
Memory is NUMA with vastly varying latencies
and bandwidths
Energy for data transport is also a problem

E— " " S T E—— E—

Far Memory

Capacity : ?X

| | Mem | , |
N Near Memory Z_|
~| Operation Approx Energy Today
Bandwidth = 1 Instruction Execution 5-10 nJ
= FP operation 200 pJ
Byte read from cache 10-20 pJ
Latency Byte read from DRAM 1.5 nJ
Bandwidth Byte over IC fabric 5 pJ/hop—250 pJ+

Capacity

X Source: Borkar, PACT11 keynote

_— e, — ,— ,— ,— ,— — — —— — — — —

Data vs. People

f
|
|

Data

VMiemories

Reflecting back to 2006-2008

* Gas price reached > $4/gal => people
movement became expensive
* How did people react?
— Live closer to work
— Denser city zoning laws
— Teleworking
— Carpooling
— They bought gas hybrid cars
 What can we learn from them?

Lessons Learned

Strategy Computer Architecture Equivalent

Live closer to work -tocatity-optimization— Not covered today
Denser city zoning laws Replace DRAM/SRAM with NVM

Teleworking Processing in Memory

Carpooling Bulk data transfer

Hybrid and electric cars Wrelessinterconnmect-and-siticomn
photonics Not covered today

Non-Volatile Main Memory

Non-Volatile Memory (NVM)

 NVMs are emerging:
— Phase-Change Memory (PCM)
— Memristor
— ReRAM
— STT-RAM
— 3D Xpoint

* Use as storage?

— Requires fast interface
« NVMe
- DDRXx

— Requires reworking of software stack

« Use as memory?
— Enables persistent memory

NVM and Storage Class Memory

30 XPowr™ TECHNOLOGY

e e 3D XPolnt™

Aleacy. ~10%
Sire of Dass ~ 1 000X

R]

MEMORY

Intel 3D Xpoint (Optane):

20nm process

SLC (1 bit/cell)

7 microsec latency

78,500 (70:30 random) read/write IOPS
NVMe interface

375GB - 1.5TB

Why Persistent Memory?

e Suppose important data is in a linked list
* Every so often, write data in linked list to a file

Without persistent memory

f = fopen(...);

p = Head,;

while (p !'= NULL) {
fprintf(f, "%d\n", p->data);

p = p->hext;

}

fclose(f);

* Expensive, and does not utilize NVMM

With Persistent Memory

Skip file operations, keep data in memory

“Most” data already “durable”

— Linked list data may be in NVMM (durable) or in
caches (not durable yet)

— On a failure (e.g. power failure, software crash), is the
linked list in a consistent state?

Persistency requires reasoning about failure
recovery, which requires:

1. Durability ordering

2. Atomic durability

Durability Ordering

Example linked list

prev data next

g L

-

O

-«

JEEEN

Suppose we want to perform ops in this order

— Change a->data to

6

— Change b->data to 8

Linked list is inconsistent

@tb

st a

Cach []

aehe %J Failure
writeback b

Durability order != program order N g

Durable Atomicity

e Suppose we would like to delete Node 4

a b C
o—>|:| 3 |0—>|' 4 0—>|

e |f failure occurs in the middle, linked list not
recoverable!

p->prev->next = p->next;

failure occurs here! N\ 3 |* o| 4 '<—o| 5 |>|

— Traversing from left to right, Node 4 is missing
— Traversing from right to left, Node 4 is found

Intel PMEM

* |nstructions to implement
durable barrier

— Clflush/clflushopt: clean a
dirty block from caches to

| L | L1
L2

MC I
— Clwb: write back (i.e. evict) chwo
a dirty block [mh\ }
— Pcommit: commit write
from MC to NVMM* [MC] []
pcommit
st A st A NVMM NViM
clwb A ‘ clwb A
pcommit sfence
A th isted pcommit *pcommit has been deprecated
@no S sfence

Achieving Failure Safety

* PMEM provides durable barriers, but atomic

durability is programmer’s responsi
* Programmers can transactionalize t

Perform undo-logging. Make the undo-log
durable.

oility

neir SW:

updates

Logged_bit is set and made durable, indicating a trans-

action has begun.

Commit updates to the memory and make them durable.
Logged_bit is unset and made durable, indicating the
transaction is complete.

Example

log_index =0;
log_op = OP_INSERT;

memcpy(&LOGJ[log_index], nn, sizeof(structjnode));
Create undo log LS8 poton_inceny
SFENCE;
1 CLWB(&LOG]log_index]);
- B arrier CLWB(&LOG_ptr[log_index]); Undo logging
log_index++;
CLWB((void*)&log_index);

S et I O gg e d b i t Célg_;\évié'\%f*)&log_op);
SFENCE,

— Barrier]

SFENCE;
CLWB ((void*)&logged); Set logged_bit

Make changes

SFENCE;

— B a r rl e r temp=(struct node *)malloc(sizeof(struct node));
temp->node_key=num;
memcpy(temp->data, val, DATASIZE);
nn->next=temp;

Unset logged bit =
g
. SFENCE;
— Barrier S,
SFENCE:

Transaction

logged = 0;

SFENCE;
CLWB((void*)&logged); Unset logged_bit
SFENCE;

‘ .

Speculative Persistence [ISCA’17]

* Observation: processor frequently stalls at
pcommit

* Solution: execute speculatively past pcommit
— Mis-speculation is rare: only when failure occurs
— Applies to sequential program also
— Principles
* Apply speculation aggressively

* Make correct speculation fast
* Recovery time is not very important

Log Benchmark + undo logging

. Log+P Log + PMEM instructions
Evaluation - Oy 2%«

Log + P + sfence (fail-safe version)

Sp256 Speculative persistence (256 entries)

B e maae ”*1‘&‘_0" __ n
O Log
— | Log+P
2 120 [R O I
o Wl Sp256
S 100 -l -
D
)
S 80| e T :
: |
3 60 || M
I
S 40 | O o
§ 20 il RB tree
— | AvIT| - N\ [T A ==

O i Graph LinkedList StringSwap

0 _ . A T

AT BT GH HM LL RT SS Gmean

- Baseline = original benchmark without logging or persistence
- Adding sfence nearly doubles the overheads (33% vs. 60%)
- SP reduces the overheads from 60% to 38% (Log+P+Sf)

23

Observations

* SP only removes pipeline stall overheads
* Logging code overheads remain

* Can we perform logging in hardware?
— No extra code
— Low execution time overhead
— But, not flexible

e |t limits transaction count
e |t limits transaction size

Alternatives?

e ATOM [HPCA’17] introduced hardware logging

— Automatically logs stores within a transaction
— Hardware treats log updates and stores differently

 We propose Proteus [MICRO’17]

— Software supported hardware logging

FLEXIBILITY

LOW HIGH

Proteus

Atom (NEW)

Mnemosyne
Nv-Heap
PMEM

PERFORMANCE
LOW HIGH

Our Solution

DurableTX { dix_begin

st A log-load LR1, A

log-flush LR1, logofA
stA

a.’.cx_end

 Compiler replaces durable store with a pair of
log-load and log-flush

— Flexibility of software logging is maintained
— Lower instruction overheads vs. software logging

Architecture

'.gd Regiser Fie * 4 special registers keep
g LDRL'”‘ % track of log area in mem
Pipeline
/ * Log data registers (LDR)
! \S«Q lega keep data being logged
oa Add tore
N = * LogQ keeps non-persisted
I f / X log-flush requests
tag LRU ixID
rS——— e LLT is used for coherence
lookup
Mem Controller with ADR
| Router | Y 1
e LPQ temporarily holds log

writes, is in the non-
volatile domain

K
Arbiter

v

to/from NVMM

Performance Results

AT BT HM

* Deprecating pcommit helps (vs. sw logging)

* Proteus slightly faster than ATOM and is not far
from an ideal case of no logging

Number of NVMM Writes vs. ATOM

6L | O ATOM ...
W Proteus

Number of writes
o — N w
o
I

* Much fewer writes => improved write
endurance

Processing in Memory (PIM)

* HPCA

Processing in Memory

2001

Automatically Mapping Code on an Intelligent Memory Architecture*

Jaejin Lee!, Yan Solihin'®, and Josep Torrellas'
TUniversity of Illinois at Urbana-Champaign
tMichigan State University
Los Alamos National Laboratory
http://iacoma.cs.uiuc.edu/flexram

Processor Chip
Case Original Loop Partitioned Loop
1 Cocre _| chzohel P.host Code | P.mem Code
Fully DO I =1, 100 DO I =1, 70 DO I = 71, 100
+ Parallel B(I) = A(I) B(I) = A(I) B(I) = A(TI)
Distributable DO I =1, 100 DO I =1, 100 DO I =1, 100
Memory Chip Without A(I) = A(I-1) A(I) = A(I-1) C(I) = C(I+1)
Synchronization C(I) = C(I+1)
m Dl.strlbutable DO I = 1, 100 DO I = 1, 100 DO I = 1, 100
With A(I) = A(I-1)+B(I) A(I) = A(I-1)+B(I) IF (MOD(I+3,4).EQ.0) THEN
HH Dopipe C(I) = A(I) IF (MOD(I,4).EQ.0) THEN WAIT
] DRAM - WRITEBACK(A(I-3) to A(I)) ENDIF
HH SIGNAL C(I) = A(I)
ENDIF

ISCA 2002

Yan Solihin

T University of Illinois at Urbana-Champaign

Jaejin Lee

tMichigan State University

http://iacoma.cs.uiuc.edu
http://www.cse.msu.edu/~jlee

Using a User-Level Memory Thread for Correlation Prefetching*

Josep Torrellas '

Main Processor

DRAM chip
|
Soge | B —I1T;)
Chip Interface 2
‘ 1 Memory | | >
E Processor Filter 5
ta | Cache ||~/ | 1T}
— Other
— Units Memory
Controller

DRAM

Correlation Table

Miss Sequence

current miss

a,b,c,a,d,c,...

current miss

a,b,c,a,d,c,...

«— prefetch d,b,c

® NumLevels=2
alb [
SecondLast—{ b | c
Last —| c
NumSucc=2
(ii) ald|b|c
blc a
Last—{c | a d
SecondLast— d | c
(iii)
onmissa — a|d|b|c|[
b a
cla d
dlc

More Recent PIM

* Hong et al. [PACT 2016]

— Accelerating linked list
traversal in memory

HMC “Logic
layer

. I ' y

— Memories are treated as N i
distributed

multiprocessors

— Performance gain from
fewer hops and L] sroun ./
utilization of high intra- (a) host-processing (b) NDP (M = 1)
memory bandwdith

- »nO0xI

Same Challenges as Before

e Gain from lower data access time > loss from
slower computation

— Data must be mostly local (not in other memory
modules)

— Data must be mostly uncached by host processor
— NUMA computation model

* Coherence with other memory processors and
with host processor

* Memory access using virtual address or physical
address?

— Additional complexity from MMU

Bulk Data Operations

Bulk Data Operations

e Bulk data copying and initialization (BCl)

— Memory-to-memory bulk data transfers
* Kernel libs: copy from_user, memcpy, etc.
e User libs: memcpy, memset, etc.

— Cache-to-cache bulk transfers
— Processor-to-accelerator bulk transfers

 Examples of memory-to-memory BCI

— TCP/IP processing
* Apache web server spends 20% time on BCI

— File operations
— Page initialization

Current M2M BCI Implementation

Two flavors

Explicit loop of loads & stores

PowerPC

loop:
Iwz r1, 0(r2)
addir2, r2, 32
stw rl, 0(r3)
addir3, r3, 32
bdnz loop

Copy instruction (expanded into implicit loop of loads & stores)

X86 S/390

mov esi, src la r2, source_addr
mov edi, dst la r3, source_len
mov ecx, len la r4, dst_addr
rep movsd lar5, dst_len

mvcl r2, r4

Current BCI Performs Poorly

* TCP/IP processing has become the major
performance bottleneck of networking.

* Why so poorly?
— Granularity inefficiency
— Pipeline inefficiency
— Cache affinity inflexibility

FastBCIl [PACT09]

* An efficient architectural support for BCI

* New Instruction: |BrLkcPY Reg SRC, Reg DEST, Reg PARAM

— Reg_SRC/Reg_DEST: specify src/dst base addresses
— Reg_ PARAM: specify size (4KB max) and cache affinity options

* On chip engine instead of implicit loop

- N

-7

Processor | wl TIR I BCIE

Core Sy MCU
LSQ e g / \

’ == PVSRs CSRs
L1 Cache [w— |m'1: ‘c\sxs | ’

}

% 5T —CST]

L2 Cache [=—™_ __ ——

FastBCl Benefits

Granularity efficiency

— Reduce 99.8%/87.5% TLB/cache accesses
Pipeline efficiency

— Early Commit and Non-blocking

Cache affinity flexibility

— Options: Cacheable, Non-cacheable and Cache Neutral
— Cache neutral: No new copying data brought into cache
e Tends to produce robust performance
Roughly equal performance gains from all three. Total 2-
3x faster

word 1 |
word 2
word 3
word 4
word 5
word 6
word 7
word 8
word 9
word 10
word 11
word 12
word 13
word 14
word 15
word 16

Granularity Effi

ciency

page | |
| — block 1 —
| — block 2 —
| — _
| | Latency of FastBClI initialization
| — (b)
| —
| —
| —
| —
| —
| —
| —
Legend: | TLB access | A
F—— Store | A

|—

Latency of loop-based initialization

Increase TLB/Cache access granularity

*TLB access at page granularity

eReduce 99.8% TLB accesses

eCache access at cache-block granularity

eReduce 87.5% cache accesses

Pipeline Efficiency

Time

takes longer to complete

Validating page | | due to cache misses
writing block 1 — /
!
f
[

writing block 2 | BLEINIT commirtable

1
writing block 3 T
|

writing block n r

| A dependent on biock 1
delayed until copying completes
inst A (dependent) —
inst B (independenyy e —
B’s fatch delayed due A/
to full ROB

(a) FastBCl with blocking and no early commit

BCI takes long time, FastBCl instruction
blocks ROB based instruction commit

BLEINIT committabie

1

Validating page |]
writing block 1 —
writing block 2 I i

writing block 3 —

writing block n I 1

inst A (dependent) —
inst B (independent) —

B ferched early becavse
BLEINIT dogs not clog ROB

(b) FastBCI with Early Commit

BLIINIT commirtable

f

Validating page | |
writing block 1 —
writing block 2 T
writing block 3 —

..
L 1
(| 1

writing block n
. 7 A issued and executed when
inst A (dependent) biock 1's copying is done
inst B (independent) —

e

B forched early becaise
BLEINIT doe: not clog ROB

(c) FastBCl with Early Commit + Non-blocking

Non-blocking: copying progress is tracked per | Early commit: FastBCl instruction commits once
block, instructions dependent on completed copying regions exception validation is completed
blocks are committable.

Another Avenue: Circuit Switching NoC

Packet-switched
Request

8x8 Circuit-
switched NoC PClk

Circuit-switched
Acknowledge

N [\.ccik

'T\ — Circuit-switched
} Data Transmission
Routers , \ ' \ CClk

2mm links

Input
ports

Source: Borkar, PACT 2011 keynote

Physical Circuit—switched

channel

Virtual channel Switch
Y
»%} I
Cro¥bar
»%} =T
»%} =T
i NN v

Control (routing, arbitration, scheduling)

Output
ports

Packet vs. Circuit Switching

* CS latency within 5% of PS latency with high
hop count and/or large messages

Message size, Uncontended Latency (number of clock cycles) How much
distance (16B-link) Packet Switching (PS) | Circuit Switching (CS) slower?

64B, 2 hops 13 27 108%
1KB, 2 hops 73 87 19%
64KB, 2 hops 265 279 5%
64B, 6 hops 33 75 127%
1KB, 6 hops 93 135 45%
64KB, 6 hops 285 327 15%

Message size, Uncontended Latency (number of clock cycles) How much
distance (2B-link) Packet Switching (PS) | Circuit Switching (CS) slower?

64B, 2 hops 41 55 34%
1KB, 2 hops 514 535 4%
64KB, 2 hops 2050 2071 1%
64B, 6 hops 54 103 91%
1KB, 6 hops 534 583 9%
64KB, 6 hops 2070 2119 2%

Conclusions

~uture architecture has both deep cache
nierarchy as well as heterogeneous memories

ncreasingly important
— Locality optimization
— Persistent memory (with NVMM)

— Processing in Memory
— Bulk data transfer/operation

Thank you

I'”d be happy to answer questions

