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Let’s Revisit CPU-Memory Gap

e 1999
— CPU speed grows at 55%/year 2 GHz
— Memory speed grows at 7%/year L1 Cache | 273 cycles
— Processing in Memory research born L2 Cache | 10-20 cycles
e Put simple processor in DRAM chips R —

* Berkeley IRAM, lllinois FlexRAM, etc. - - - -

— No industry adoption 100-200 cycles
e Caches are good enough
 DRAM chip has no budget for processing



14 Years Later (2013)

— Processor speed growth stalled around 2005-2007
— Multicore design proliferated
— Cache hierarchy got deeper (for scaling purpose)

e e access e

L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 256KB-1MB L2 Cache (SRAM)
10-20 cycle access time

————————————————————————————————————————————————————————————————————————

1 ! ! ! ! ! ! ! ! ! ! ! |
V3 o L3 o L3 ! L3 o L3 4! L3 4t L3 4! L3 ' L3 4! L3 ' L3 ! L3
! ! ! ! ! ! ! ! ! ! ! ! 1 8-80MB L3 Cache,

1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 1 Bank ! 20-50 cycle access time

_____________________________________________________________

30-100MB L4 Cache,
L4 Cache 50-80 cycle access time
4-32GB Main Memory
Main Memory 120-400 cycle access time




What’s in Store in 20277

* Yan’s crystal ball

* Trend 1: Increasing demand
for memory

— In-memory databases, key-value
stores, data analytics

— Servers have limited scope for -
memory expansion

* Limited by the number of memory
ports on a rack unit
N . . r)/\,/ ;
* Limited by DRAM scaling => must @7 hspacivaio
rely on NVM —

Aspect Ratio = Hb

Source: S. J. Hong (Hynix), IEDM 2010
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* Trend 2: Resource disaggregation
— Servers have poor resource utilization
— Interconnection has become faster
— Expand memory with external memory pools

e How connected? Interconnect becomes the bottleneck
— CCIX, GenZ, PCle with MMIO

e Silicon Photonics?

* Trend 1 and 2 point to rack-scale server
architectures
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|- CPU-Memory Gap is alive and well
Memory is NUMA with vastly varying latencies
and bandwidths
Energy for data transport is also a problem
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Far Memory

Capacity : ?X

| | Mem | , |
N Near Memory Z_|
~| Operation Approx Energy Today
Bandwidth = 1 Instruction Execution 5-10 nJ
= FP operation 200 pJ
Byte read from cache 10-20 pJ
Latency Byte read from DRAM 1.5 nJ
Bandwidth Byte over IC fabric 5 pJ/hop—250 pJ+

Capacity

X Source: Borkar, PACT11 keynote
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Data vs. People
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Reflecting back to 2006-2008

* Gas price reached > $4/gal => people
movement became expensive
* How did people react?
— Live closer to work
— Denser city zoning laws
— Teleworking
— Carpooling
— They bought gas hybrid cars
 What can we learn from them?



Lessons Learned

Strategy Computer Architecture Equivalent

Live closer to work -tocatity-optimization— Not covered today
Denser city zoning laws Replace DRAM/SRAM with NVM

Teleworking Processing in Memory

Carpooling Bulk data transfer

Hybrid and electric cars Wrelessinterconnmect-and-siticomn
photonics Not covered today



Non-Volatile Main Memory



Non-Volatile Memory (NVM)

 NVMs are emerging:
— Phase-Change Memory (PCM)
— Memristor
— ReRAM
— STT-RAM
— 3D Xpoint

* Use as storage?

— Requires fast interface
« NVMe
- DDRXx

— Requires reworking of software stack

« Use as memory?
— Enables persistent memory




NVM and Storage Class Memory

30 XPowr™ TECHNOLOGY

e e 3D XPolnt™

Aleacy. ~10%
Sire of Dass ~ 1 000X

R ]

MEMORY

Intel 3D Xpoint (Optane):

20nm process

SLC (1 bit/cell)

7 microsec latency

78,500 (70:30 random) read/write IOPS
NVMe interface

375GB - 1.5TB




Why Persistent Memory?

e Suppose important data is in a linked list
* Every so often, write data in linked list to a file

Without persistent memory

f = fopen(...);

p = Head,;

while (p !'= NULL) {
fprintf(f, "%d\n", p->data);

p = p->hext;

}

fclose(f);

* Expensive, and does not utilize NVMM



With Persistent Memory

Skip file operations, keep data in memory

“Most” data already “durable”

— Linked list data may be in NVMM (durable) or in
caches (not durable yet)

— On a failure (e.g. power failure, software crash), is the
linked list in a consistent state?

Persistency requires reasoning about failure
recovery, which requires:

1. Durability ordering

2. Atomic durability



Durability Ordering

Example linked list

prev data next

g L

-

O

-«

JEEEN

Suppose we want to perform ops in this order

— Change a->data to

6

— Change b->data to 8

Linked list is inconsistent

@tb

st a

Cach [ ]

aehe %J Failure
writeback b

Durability order != program order N g



Durable Atomicity

e Suppose we would like to delete Node 4

a b C
o—>|:| 3 |0—>|' 4 0—>|

e |f failure occurs in the middle, linked list not
recoverable!

p->prev->next = p->next;

failure occurs here! N\ 3 |* o| 4 '<—o| 5 |>|

— Traversing from left to right, Node 4 is missing
— Traversing from right to left, Node 4 is found



Intel PMEM

* |nstructions to implement
durable barrier

— Clflush/clflushopt: clean a
dirty block from caches to

| L | L1
L2

MC I
— Clwb: write back (i.e. evict) chwo
a dirty block [ mh\ }
— Pcommit: commit write
from MC to NVMM* [ MC ] [ ]
pcommit
st A st A NVMM NViM
clwb A ‘ clwb A
pcommit sfence
A th isted pcommit *pcommit has been deprecated
@no S sfence




Achieving Failure Safety

* PMEM provides durable barriers, but atomic

durability is programmer’s responsi
* Programmers can transactionalize t

Perform undo-logging. Make the undo-log
durable.

oility

neir SW:

updates

Logged_bit is set and made durable, indicating a trans-

action has begun.

Commit updates to the memory and make them durable.
Logged_bit is unset and made durable, indicating the
transaction is complete.




Example

log_index =0;
log_op = OP_INSERT;

memcpy(&LOGJ[log_index], nn, sizeof(structjnode));
Create undo log LS8 poton_inceny
SFENCE;
1 CLWB(&LOG]log_index]);
- B arrier CLWB(&LOG_ptr[log_index]); Undo logging
log_index++;
CLWB((void*)&log_index);

S et I O gg e d b i t Célg_;\évié'\%f*)&log_op);
SFENCE,

— Barrier ]

SFENCE;
CLWB ((void*)&logged); Set logged_bit

Make changes

SFENCE;

— B a r rl e r temp=(struct node *)malloc(sizeof(struct node));
temp->node_key=num;
memcpy(temp->data, val, DATASIZE);
nn->next=temp;

Unset logged bit =
g
. SFENCE;
— Barrier S,
SFENCE:

Transaction

logged = 0;

SFENCE;
CLWB((void*)&logged); Unset logged_bit
SFENCE;

‘ .




Speculative Persistence [ISCA’17]

* Observation: processor frequently stalls at
pcommit

* Solution: execute speculatively past pcommit
— Mis-speculation is rare: only when failure occurs
— Applies to sequential program also
— Principles
* Apply speculation aggressively

* Make correct speculation fast
* Recovery time is not very important



Log Benchmark + undo logging

. Log+P Log + PMEM instructions
Evaluation - Oy 2%«

Log + P + sfence (fail-safe version)

Sp256 Speculative persistence (256 entries)

B e maae ”*1‘&‘_0" __________________________________________________________________________________ n
O Log
— | Log+P
2 120 [ R O I
o Wl Sp256
S 100 -l -
D
)
S 80| e T :
: |
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I
S 40 | O o
§ 20 il RB tree
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- Baseline = original benchmark without logging or persistence
- Adding sfence nearly doubles the overheads (33% vs. 60%)
- SP reduces the overheads from 60% to 38% (Log+P+Sf)

23



Observations

* SP only removes pipeline stall overheads
* Logging code overheads remain

* Can we perform logging in hardware?
— No extra code
— Low execution time overhead
— But, not flexible

e |t limits transaction count
e |t limits transaction size



Alternatives?

e ATOM [HPCA’17] introduced hardware logging

— Automatically logs stores within a transaction
— Hardware treats log updates and stores differently

 We propose Proteus [MICRO’17]

— Software supported hardware logging

FLEXIBILITY

LOW HIGH

Proteus

Atom (NEW)

Mnemosyne
Nv-Heap
PMEM

PERFORMANCE
LOW HIGH




Our Solution

DurableTX { dix_begin

st A log-load LR1, A

log-flush LR1, logofA
stA

a.’.cx_end

 Compiler replaces durable store with a pair of
log-load and log-flush

— Flexibility of software logging is maintained
— Lower instruction overheads vs. software logging



Architecture

'.gd Regiser Fie * 4 special registers keep
g LDRL'”‘ % track of log area in mem
Pipeline
/ * Log data registers (LDR)
! \S«Q  lega keep data being logged
oa Add tore
N = * LogQ keeps non-persisted
I f / X log-flush requests
tag LRU ixID
rS——— e LLT is used for coherence
lookup
Mem Controller with ADR
| Router | Y 1
e LPQ temporarily holds log

writes, is in the non-
volatile domain

K
Arbiter

v

to/from NVMM




Performance Results

AT BT HM

* Deprecating pcommit helps (vs. sw logging)

* Proteus slightly faster than ATOM and is not far
from an ideal case of no logging



Number of NVMM Writes vs. ATOM

6L | O ATOM ...
W Proteus

Number of writes
o — N w
o
I

* Much fewer writes => improved write
endurance



Processing in Memory (PIM)



* HPCA

Processing in Memory

2001

Automatically Mapping Code on an Intelligent Memory Architecture*

Jaejin Lee!, Yan Solihin'®, and Josep Torrellas'
TUniversity of Illinois at Urbana-Champaign
tMichigan State University
Los Alamos National Laboratory
http://iacoma.cs.uiuc.edu/flexram

Processor Chip
Case Original Loop Partitioned Loop
1 Cocre _| chzohel P.host Code | P.mem Code
Fully DO I =1, 100 DO I =1, 70 DO I = 71, 100
+ Parallel B(I) = A(I) B(I) = A(I) B(I) = A(TI)
Distributable DO I =1, 100 DO I =1, 100 DO I =1, 100
Memory Chip Without A(I) = A(I-1) A(I) = A(I-1) C(I) = C(I+1)
Synchronization C(I) = C(I+1)
m Dl.strlbutable DO I = 1, 100 DO I = 1, 100 DO I = 1, 100
With A(I) = A(I-1)+B(I) A(I) = A(I-1)+B(I) IF (MOD(I+3,4).EQ.0) THEN
HH Dopipe C(I) = A(I) IF (MOD(I,4).EQ.0) THEN WAIT
] DRAM - WRITEBACK(A(I-3) to A(I)) ENDIF
HH SIGNAL C(I) = A(I)
ENDIF




ISCA 2002

Yan Solihin

T University of Illinois at Urbana-Champaign

Jaejin Lee

tMichigan State University

http://iacoma.cs.uiuc.edu
http://www.cse.msu.edu/~jlee

Using a User-Level Memory Thread for Correlation Prefetching*

Josep Torrellas '

Main Processor

DRAM chip
|
Soge | B —I1T;)
Chip Interface 2
‘ 1 Memory | | >
E Processor Filter 5
ta | Cache ||~/ | 1T}
— Other
— Units Memory
Controller

DRAM

Correlation Table

Miss Sequence

current miss

a,b,c,a,d,c,...

current miss

a,b,c,a,d,c,...

«— prefetch d,b,c

® NumLevels=2
alb [
SecondLast—{ b | c
Last —| c
NumSucc=2
(ii) ald|b|c
blc a
Last—{c | a d
SecondLast— d | c
(iii)
onmissa — a|d|b|c|[
b a
cla d
dlc




More Recent PIM

* Hong et al. [PACT 2016]

— Accelerating linked list
traversal in memory

HMC “Logic
layer

. I ' y

— Memories are treated as N i
distributed

multiprocessors

— Performance gain from
fewer hops and L] sroun ./
utilization of high intra- (a) host-processing  (b) NDP (M = 1)
memory bandwdith

- »nO0xI




Same Challenges as Before

e Gain from lower data access time > loss from
slower computation

— Data must be mostly local (not in other memory
modules)

— Data must be mostly uncached by host processor
— NUMA computation model

* Coherence with other memory processors and
with host processor

* Memory access using virtual address or physical
address?

— Additional complexity from MMU



Bulk Data Operations



Bulk Data Operations

e Bulk data copying and initialization (BCl)

— Memory-to-memory bulk data transfers
* Kernel libs: copy from_user, memcpy, etc.
e User libs: memcpy, memset, etc.

— Cache-to-cache bulk transfers
— Processor-to-accelerator bulk transfers

 Examples of memory-to-memory BCI

— TCP/IP processing
* Apache web server spends 20% time on BCI

— File operations
— Page initialization



Current M2M BCI Implementation

Two flavors

Explicit loop of loads & stores

PowerPC

loop:
Iwz r1, 0(r2)
addir2, r2, 32
stw rl, 0(r3)
addir3, r3, 32
bdnz loop

Copy instruction (expanded into implicit loop of loads & stores)

X86 S/390

mov esi, src la r2, source_addr
mov edi, dst la r3, source_len
mov ecx, len la r4, dst_addr
rep movsd lar5, dst_len

mvcl r2, r4



Current BCI Performs Poorly

* TCP/IP processing has become the major
performance bottleneck of networking.

* Why so poorly?
— Granularity inefficiency
— Pipeline inefficiency
— Cache affinity inflexibility



FastBCIl [PACT09]

* An efficient architectural support for BCI

* New Instruction: |BrLkcPY Reg SRC, Reg DEST, Reg PARAM

— Reg_SRC/Reg_DEST: specify src/dst base addresses
— Reg_ PARAM: specify size (4KB max) and cache affinity options

* On chip engine instead of implicit loop

- N

-7

Processor | wl TIR I BCIE

Core Sy MCU
LSQ e g / \

’ == PVSRs CSRs
L1 Cache [w— |m'1: ‘c\sxs | ’

}

% 5T —CST ]

L2 Cache [=—™_ __ ——




FastBCl Benefits

Granularity efficiency

— Reduce 99.8%/87.5% TLB/cache accesses
Pipeline efficiency

— Early Commit and Non-blocking

Cache affinity flexibility

— Options: Cacheable, Non-cacheable and Cache Neutral
— Cache neutral: No new copying data brought into cache
e Tends to produce robust performance
Roughly equal performance gains from all three. Total 2-
3x faster



word 1 |
word 2
word 3
word 4
word 5
word 6
word 7
word 8
word 9
word 10
word 11
word 12
word 13
word 14
word 15
word 16

Granularity Effi

ciency

page | |
| — block 1 —
| — block 2 —
| — _
| | Latency of FastBClI initialization
| — (b)
| —
| —
| —
| —
| —
| —
| —
Legend: | TLB access | A
F—— Store | A

|—

Latency of loop-based initialization

Increase TLB/Cache access granularity

*TLB access at page granularity

eReduce 99.8% TLB accesses

eCache access at cache-block granularity

eReduce 87.5% cache accesses



Pipeline Efficiency

Time

takes longer to complete

Validating page | | due to cache misses
writing block 1 — /
!
f
[

writing block 2 | BLEINIT commirtable

1
writing block 3 T
|

writing block n r

| A dependent on biock 1
delayed until copying completes
inst A (dependent) —
inst B (independenyy e —
B’s fatch delayed due A/
to full ROB

(a) FastBCl with blocking and no early commit

BCI takes long time, FastBCl instruction
blocks ROB based instruction commit

BLEINIT committabie

1

Validating page | ]
writing block 1 —
writing block 2 I i

writing block 3 —

writing block n I 1

inst A (dependent) —
inst B (independent) —

B ferched early becavse
BLEINIT dogs not clog ROB

(b) FastBCI with Early Commit

BLIINIT commirtable

f

Validating page | |
writing block 1 —
writing block 2 T
writing block 3 —

..
L 1
(| 1

writing block n
. 7 A issued and executed when
inst A (dependent) biock 1's copying is done
inst B (independent) —

e

B forched early becaise
BLEINIT doe: not clog ROB

(c) FastBCl with Early Commit + Non-blocking

Non-blocking: copying progress is tracked per | Early commit: FastBCl instruction commits once
block, instructions dependent on completed copying regions exception validation is completed
blocks are committable.




Another Avenue: Circuit Switching NoC

Packet-switched
Request

8x8 Circuit-
switched NoC PClk

Circuit-switched
Acknowledge

N [\.ccik

'T\ — Circuit-switched
} Data Transmission
Routers , \ ' \ CClk

2mm links

Input
ports

Source: Borkar, PACT 2011 keynote

Physical  Circuit—switched

channel

Virtual channel Switch
Y
»%} I
Cro¥bar
»%} =T
»%} =T
i NN v

Control (routing, arbitration, scheduling)

Output
ports



Packet vs. Circuit Switching

* CS latency within 5% of PS latency with high
hop count and/or large messages

Message size, Uncontended Latency (number of clock cycles) How much
distance (16B-link) Packet Switching (PS) | Circuit Switching (CS) slower?

64B, 2 hops 13 27 108%
1KB, 2 hops 73 87 19%
64KB, 2 hops 265 279 5%
64B, 6 hops 33 75 127%
1KB, 6 hops 93 135 45%
64KB, 6 hops 285 327 15%

Message size, Uncontended Latency (number of clock cycles) How much
distance (2B-link) Packet Switching (PS) | Circuit Switching (CS) slower?

64B, 2 hops 41 55 34%
1KB, 2 hops 514 535 4%
64KB, 2 hops 2050 2071 1%
64B, 6 hops 54 103 91%
1KB, 6 hops 534 583 9%
64KB, 6 hops 2070 2119 2%




Conclusions

~uture architecture has both deep cache
nierarchy as well as heterogeneous memories

ncreasingly important
— Locality optimization
— Persistent memory (with NVMM)

— Processing in Memory
— Bulk data transfer/operation



Thank you

I'”d be happy to answer questions



