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Let’s	
  Revisit	
  CPU-­‐Memory	
  Gap

• 1999
– CPU	
  speed	
  grows	
  at	
  55%/year
– Memory	
  speed	
  grows	
  at	
  7%/year
– Processing	
  in	
  Memory	
  research	
  born

• Put	
  simple	
  processor	
  in	
  DRAM	
  chips
• Berkeley	
  IRAM,	
  Illinois	
  FlexRAM,	
  etc.

– No	
  industry	
  adoption
• Caches	
  are	
  good	
  enough
• DRAM	
  chip	
  has	
  no	
  budget	
  for	
  processing

L1 Cache

Core

L2 Cache

2 GHz

2-3 cycles

10-20 cycles

100-200 cycles



14	
  Years	
  Later	
  (2013)

– Processor	
  speed	
  growth	
  stalled	
  around	
  2005-­‐2007
–Multicore	
  design	
  proliferated
– Cache	
  hierarchy	
  got	
  deeper	
  (for	
  scaling	
  purpose)

i
i

i
i

i
i

i
i
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latencies in 2013 (in terms of CPU clock cycles) and capacity of each cache is shown in the figure.
After the L3 cache, there may be an off-die L4 cache and the main memory.

P P

D

L2 L2

P

L2

P

L2

P

L2

P

L2

P

L2

P

L2

P

L2

P

L2

P

L2

P

L2

L3 
Bank

L3 
Bank

L3 
Bank

L3 
Bank

L3 
Bank

L3 
Bank

L3 
Bank

L3 
Bank

L3 
Bank

L3 
Bank

L3 
Bank

L3 
Bank

I D I D I D I D I D I D I D I D I D I D I D I
32-64KB  L1-Instruction/Data Cache (SRAM)

2-3 cycle access time
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10-20 cycle access time

8-80MB L3 Cache,
20-50 cycle access time

Main Memory
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30-100MB L4 Cache,

50-80 cycle access time

4-32GB Main Memory
120-400 cycle access time

Figure 5.1: A memory hierarchy configuration in a multicore system in 2013.

The example in the figure is similar to the memory hierarchy of the IBM Power8 processor.
In the Power8, each core has 4-way simultaneous multithreading (SMT), which means that it can
execute four threads simultaneously by fetching from two different program counters. Most of the
processor core resources such as register files and functional units are shared by the four threads.
A Power8 die also has twelve cores, so there are a total of 48 threads that can run simultaneously.
Each of the cores has a 32KB L1 instruction cache and a 64KB L1 data cache. Each core also has
a private 512KB L2 cache, so in total the L2 caches have 6MB of capacity. Both the L1 and L2
caches use SRAM cells. The L3 cache is 12-way banked, and each bank has an 8MB capacity, for a
total of 96MB over all banks. The L4 cache is located off the die on the memory buffer controller,
which is connected to the main memory. The L3 and L4 caches are implemented on DRAM on
logic process, a technology referred to as embedded DRAM (eDRAM).

Due to temporal locality behavior naturally found in programs, caches are an effective structure
to keep most useful data closer to the processor. By simply keeping more recently used data in
the cache while discarding less recently used data, caches achieve that goal. For example, if data
access is completely random, the hit rate of each cache (the fraction of accesses that find their data
in the cache) will be proportional to the ratio of the cache size to the size of the program working
set (which will be minuscule for small caches). However, cache hit rates are often much higher than
that, 70-95% hit rates are not uncommon both for the L1 and L2 caches.

5.2 Basic Architectures of a Cache
Figure 5.2 shows a simple analogy in which at a very high level, a cache structure can be thought
of as a table, with multiple rows referred to as sets or congruence classes, and multiple columns



What’s	
  in	
  Store	
  in	
  2027?

• Yan’s	
  crystal	
  ball
• Trend	
  1:	
  Increasing	
  demand	
  
for	
  memory
– In-­‐memory	
  databases,	
  key-­‐value	
  
stores,	
  data	
  analytics

– Servers	
  have	
  limited	
  scope	
  for	
  
memory	
  expansion
• Limited	
  by	
  the	
  number	
  of	
  memory	
  
ports	
  on	
  a	
  rack	
  unit

• Limited	
  by	
  DRAM	
  scaling	
  =>	
  must	
  
rely	
  on	
  NVM



• Trend	
  2:	
  Resource	
  disaggregation
– Servers	
  have	
  poor	
  resource	
  utilization
– Interconnection	
  has	
  become	
  faster
– Expand	
  memory	
  with	
  external	
  memory	
  pools
• How	
  connected?	
  Interconnect	
  becomes	
  the	
  bottleneck

– CCIX	
  ,	
  GenZ,	
  PCIe with	
  MMIO

• Silicon	
  Photonics?

• Trend	
  1	
  and	
  2	
  point	
  to	
  rack-­‐scale	
  server	
  
architectures



Memory	
  
Pool

Rack-­‐Scale	
  Server



DRAM

NVM Shared	
  
Memory	
  Pool

Latency	
  :	
  ~5X

Near	
  Memory

Far	
  Memory

Latency	
  :	
  1X

Latency	
  :	
  ~30-­‐80X	
  ?

Capacity	
  :	
  1X

Capacity	
  :	
  ?X

Capacity	
  :	
  ?XBandwidth	
  =	
  1X

Bandwidth	
  =	
  nX

Bandwidth	
  =	
  mX

Near	
   (DRAM) Near	
  (NVM) Far
Latency 1X ~5X ~30-­‐50X

Bandwidth X ?X ?X
Capacity X ?X ?X

Memory	
  Architecture

Key	
  points:	
  
-­‐ CPU-­‐Memory	
  Gap	
  is	
  alive	
  and	
  well
-­‐ Memory	
  is	
  NUMA	
  with	
  vastly	
  varying	
  latencies	
  
and	
  bandwidths

-­‐ Energy	
  for	
  data	
  transport	
  is	
  also	
  a	
  problem

Operation Approx  Energy  Today
Instruction  Execution 5-­10  nJ
FP  operation 200  pJ
Byte  read  from  cache 10-­20  pJ
Byte  read  from  DRAM 1.5  nJ
Byte  over  IC  fabric 5  pJ/hop—250  pJ+

Source:	
  Borkar,	
  PACT11	
  keynote



Data	
  vs.	
  People
The image part with relationship ID rId3 was not found in 
the file.

The image part with 
relationship ID rId3 was not 
found in the file.

The image part with relationship 
ID rId3 was not found in the file.

The image part with 
relationship ID rId3 was not 
found in the file.

Memories

Data	
  
transport



Reflecting	
  back	
  to	
  2006-­‐2008

• Gas	
  price	
  reached	
  >	
  $4/gal	
  =>	
  people	
  
movement	
  became	
  expensive

• How	
  did	
  people	
  react?	
  
– Live	
  closer	
  to	
  work
– Denser	
  city	
  zoning	
  laws
– Teleworking
– Carpooling
– They	
  bought	
  gas	
  hybrid	
  cars

• What	
  can	
  we	
  learn	
  from	
  them?



Lessons	
  Learned
Strategy Computer	
  Architecture	
  Equivalent
Live	
  closer	
  to	
  work Locality	
  optimization
Denser	
  city	
  zoning laws Replace	
  DRAM/SRAM with	
  NVM
Teleworking Processing	
  in	
  Memory	
  
Carpooling Bulk	
  data	
  transfer
Hybrid and	
  electric	
  cars Wireless	
  interconnect	
  and	
  silicon	
  

photonics

Not	
  covered	
  today

Not	
  covered	
  today



Non-­‐Volatile	
  Main	
  Memory



Non-­‐Volatile	
  Memory	
  (NVM)

• NVMs  are  emerging:  
– Phase-­Change  Memory  (PCM)
– Memristor
– ReRAM
– STT-­RAM
– 3D  Xpoint

• Use  as  storage?
– Requires  fast  interface

• NVMe
• DDRx

– Requires  reworking  of  software  stack
• Use  as  memory?

– Enables  persistent  memory

Source:  http://www.techweekeurope.co.uk/



NVM	
  and	
  Storage	
  Class	
  Memory

Intel 3D Xpoint (Optane): 
• 20nm process
• SLC (1 bit/cell)
• 7 microsec latency
• 78,500 (70:30 random) read/write IOPS
• NVMe interface
• 375GB – 1.5TB

The image part with relationship ID rId2 was not found in the file.

Source:	
  Internet



Why	
  Persistent	
  Memory?

• Suppose	
  important	
  data	
  is	
  in	
  a	
  linked	
  list
• Every	
  so	
  often,	
  write	
  data	
  in	
  linked	
  list	
  to	
  a	
  file

• Expensive,	
  and	
  does	
  not	
  utilize	
  NVMM

f = fopen(...);
p = Head;
while (p != NULL) {
  fprintf(f, "%d\n", p->data);
  p = p->next;
}
fclose(f); 

Without persistent memory



With	
  Persistent	
  Memory

• Skip	
  file	
  operations,	
  keep	
  data	
  in	
  memory
• “Most”	
  data	
  already	
  “durable”
– Linked	
  list	
  data	
  may	
  be	
  in	
  NVMM	
  (durable)	
  or	
  in	
  
caches	
  (not	
  durable	
  yet)

– On	
  a	
  failure	
  (e.g.	
  power	
  failure,	
  software	
  crash),	
  is	
  the	
  
linked	
  list	
  in	
  a	
  consistent	
  state?	
  

• Persistency	
  requires	
  reasoning	
  about	
  failure	
  
recovery,	
  which	
  requires:	
  
1. Durability	
  ordering
2. Atomic	
  durability



P

NVMM

Cache

Durability	
  Ordering

• Example	
  linked	
  list

• Suppose	
  we	
  want	
  to	
  perform	
  ops	
  in	
  this	
  order
– Change	
  a-­‐>data	
  to	
  6
– Change	
  b-­‐>data	
  to	
  8

• Linked	
  list	
  is	
  inconsistent	
  
• Durability	
  order	
  !=	
  program	
  order

st a
st b

writeback b

Failure

data nextprev



Durable	
  Atomicity

• Suppose	
  we	
  would	
  like	
  to	
  delete	
  Node	
  4

• If	
  failure	
  occurs	
  in	
  the	
  middle,	
  linked	
  list	
  not	
  
recoverable!

– Traversing	
  from	
  left	
  to	
  right,	
  Node	
  4	
  is	
  missing
– Traversing	
  from	
  right	
  to	
  left,	
  Node	
  4	
  is	
  found

3 4 5
ba c

p->prev->next = p->next;
p->next->prev = p->prev;

3 4 5
p->prev->next = p->next;
failure occurs here!



Intel	
  PMEM
• Instructions	
  to	
  implement	
  

durable	
  barrier
– Clflush/clflushopt:	
  clean	
  a	
  

dirty	
  block	
  from	
  caches	
  to	
  
MC

– Clwb:	
  write	
  back	
  (i.e.	
  evict)	
  
a	
  dirty	
  block

– Pcommit:	
  commit	
  write	
  
from	
  MC	
  to	
  NVMM*

*pcommit has	
  been	
  deprecated

Shared	
  Cache

MCMC

NVMMNVMM

L1 L1
L2

L1 L1
L2

clwb

pcommit

st A
clwb A
pcommit

st A
clwb A
sfence
pcommit
sfence

A	
  may	
  not	
  be	
  persisted



Achieving	
  Failure	
  Safety

• PMEM	
  provides	
  durable	
  barriers,	
  but	
  atomic	
  
durability	
  is	
  programmer’s	
  responsibility

• Programmers	
  can	
  transactionalize their	
  SW:ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Shin et al.

Step 1 Perform undo-logging. Make the undo-log updates
durable.

Step 2 Logged_bit is set and made durable, indicating a trans-
action has begun.

Step 3 Commit updates to the memory and make them durable.
Step 4 Logged_bit is unset and made durable, indicating the

transaction is complete.
To understand how this works, we must consider the state of mem-

ory after a failure. The logged_bit indicates whether a transaction
is in progress or not. If the logged_bit is 0, no transaction was in
progress when the failure occurred and the current data structure
is reliable. Otherwise, the logged_bit is 1, and a transaction was in
the middle of processing. In this case, the undo log will be used to
recover the state of the data structure. Because we do not know at
what step the failure occurred, we must pessimistically recover using
the undo log regardless.

To ensure correctness of the above, the 4 steps must be strictly
ordered. If Step 2 begins before Step 1 completed, the premature
undo log may be erroneously applied to the data structure. Like-
wise, if commits began before the logged_bit were set, then an
incomplete set of updates may go undetected. We can enforce the
necessary ordering between these steps using persist barriers, the
sfence-pcommit-sfence discussed in the previous section. Given that
each step needs a persist barrier, this implies that at least 4 pcom-
mits and 8 sfence operations are needed per transactional update to
NVM. Also, compared to a volatile data structure, the added cost of
undo-logging will also be a significant overhead.

3.1.1 Detailed Example: A Non-Volatile Linked List. Figure 2
shows an example of our transactional code for a linked list. We
choose a linked list code for illustration due to its simplicity (e.g.,
compared to balanced trees). Before making any updates in the
linked list, the modified nodes need to be logged. In the example,
a new node ‘temp’ needs to be inserted after node ‘nn’. Hence, we
log data of node ‘nn’ and the address of ‘nn’. After the logging
is completed, a logged_bit is set. If the system crashes during the
transaction, if the logged_bit is set, the transaction is undone by
overwriting the original location using the logged data. If the bit is
unset, the data structure is consistent as modifications to the linked
list have not occurred. The example in the figure shows that one
transaction requires four pcommits with several sfences and clwb.
Since the data structure is stored in the NVMM, a system crash may
result in the inconsistent data structure. In Figure 2, if the system
crash happens after line 28 but before line 29, the data structure
becomes inconsistent, resulting in the linked list shown in Figure 3.
This illustrates the importance of the use of a transactional approach,
which in our case is supported through write-ahead logging.

3.2 Workload Construction
Using the write-ahead logging approach discussed above, imple-
mented using PMEM persistency instructions, we constructed a
workload consisting of benchmarks with data structures listed in the
Table 1. They are similar to ones used in previous studies [11, 49].
For each benchmark, we construct an operation, which is either a
node insertion or deletion (except for String Swap). An operation
performs searching of a random key in the data structure. If the key
is found, the node with the key is deleted. If the key is not found, a

01    log_index =0;
02    log_op = OP_INSERT;
03    memcpy(&LOG[log_index], nn, sizeof(struct node));
04    LOG_ptr[log_index] = nn;
05    
06    SFENCE;
07    CLWB(&LOG[log_index]);
08    CLWB(&LOG_ptr[log_index]);
09    log_index++;
10    CLWB((void*)&log_index);
11    CLWB((void*)&log_op);
12    SFENCE;
13    PCOMMIT;
14    SFENCE;
15    
16    logged = 1;
17    
18    SFENCE;
19    CLWB ((void*)&logged);
20    SFENCE;
21    PCOMMIT;
22    SFENCE;
23    
24    temp=(struct node *)malloc(sizeof(struct node));
25    temp->node_key=num;
26    memcpy(temp->data, val, DATASIZE);
27    nn->next=temp;
28    nn=temp;
29    nn->next=right;
30
31    SFENCE;
32    CLWB(nn);
33    CLWB(temp);
34    SFENCE;
35    PCOMMIT;
36    SFENCE;
37
38    logged = 0;
39    
40    SFENCE;
41    CLWB((void*)&logged);
42    SFENCE;
43    PCOMMIT;
44    SFENCE;

Undo logging

Set logged_bit

Transaction

Unset logged_bit

Figure 2: Persistence example with linked list

A B C D

A B C D

X NULL

Insert Node X

Figure 3: Inconsistent data structure example with linked list

new node with the key is inserted. String Swap simply selects two
keys indicating two strings in a string array and swaps them. The
last two columns of the table will be explained in Section 5.2.



ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Shin et al.

Step 1 Perform undo-logging. Make the undo-log updates
durable.

Step 2 Logged_bit is set and made durable, indicating a trans-
action has begun.

Step 3 Commit updates to the memory and make them durable.
Step 4 Logged_bit is unset and made durable, indicating the

transaction is complete.
To understand how this works, we must consider the state of mem-

ory after a failure. The logged_bit indicates whether a transaction
is in progress or not. If the logged_bit is 0, no transaction was in
progress when the failure occurred and the current data structure
is reliable. Otherwise, the logged_bit is 1, and a transaction was in
the middle of processing. In this case, the undo log will be used to
recover the state of the data structure. Because we do not know at
what step the failure occurred, we must pessimistically recover using
the undo log regardless.

To ensure correctness of the above, the 4 steps must be strictly
ordered. If Step 2 begins before Step 1 completed, the premature
undo log may be erroneously applied to the data structure. Like-
wise, if commits began before the logged_bit were set, then an
incomplete set of updates may go undetected. We can enforce the
necessary ordering between these steps using persist barriers, the
sfence-pcommit-sfence discussed in the previous section. Given that
each step needs a persist barrier, this implies that at least 4 pcom-
mits and 8 sfence operations are needed per transactional update to
NVM. Also, compared to a volatile data structure, the added cost of
undo-logging will also be a significant overhead.

3.1.1 Detailed Example: A Non-Volatile Linked List. Figure 2
shows an example of our transactional code for a linked list. We
choose a linked list code for illustration due to its simplicity (e.g.,
compared to balanced trees). Before making any updates in the
linked list, the modified nodes need to be logged. In the example,
a new node ‘temp’ needs to be inserted after node ‘nn’. Hence, we
log data of node ‘nn’ and the address of ‘nn’. After the logging
is completed, a logged_bit is set. If the system crashes during the
transaction, if the logged_bit is set, the transaction is undone by
overwriting the original location using the logged data. If the bit is
unset, the data structure is consistent as modifications to the linked
list have not occurred. The example in the figure shows that one
transaction requires four pcommits with several sfences and clwb.
Since the data structure is stored in the NVMM, a system crash may
result in the inconsistent data structure. In Figure 2, if the system
crash happens after line 28 but before line 29, the data structure
becomes inconsistent, resulting in the linked list shown in Figure 3.
This illustrates the importance of the use of a transactional approach,
which in our case is supported through write-ahead logging.

3.2 Workload Construction
Using the write-ahead logging approach discussed above, imple-
mented using PMEM persistency instructions, we constructed a
workload consisting of benchmarks with data structures listed in the
Table 1. They are similar to ones used in previous studies [11, 49].
For each benchmark, we construct an operation, which is either a
node insertion or deletion (except for String Swap). An operation
performs searching of a random key in the data structure. If the key
is found, the node with the key is deleted. If the key is not found, a

01    log_index =0;
02    log_op = OP_INSERT;
03    memcpy(&LOG[log_index], nn, sizeof(struct node));
04    LOG_ptr[log_index] = nn;
05    
06    SFENCE;
07    CLWB(&LOG[log_index]);
08    CLWB(&LOG_ptr[log_index]);
09    log_index++;
10    CLWB((void*)&log_index);
11    CLWB((void*)&log_op);
12    SFENCE;
13    PCOMMIT;
14    SFENCE;
15    
16    logged = 1;
17    
18    SFENCE;
19    CLWB ((void*)&logged);
20    SFENCE;
21    PCOMMIT;
22    SFENCE;
23    
24    temp=(struct node *)malloc(sizeof(struct node));
25    temp->node_key=num;
26    memcpy(temp->data, val, DATASIZE);
27    nn->next=temp;
28    nn=temp;
29    nn->next=right;
30
31    SFENCE;
32    CLWB(nn);
33    CLWB(temp);
34    SFENCE;
35    PCOMMIT;
36    SFENCE;
37
38    logged = 0;
39    
40    SFENCE;
41    CLWB((void*)&logged);
42    SFENCE;
43    PCOMMIT;
44    SFENCE;

Undo logging

Set logged_bit

Transaction

Unset logged_bit

Figure 2: Persistence example with linked list

A B C D

A B C D

X NULL

Insert Node X

Figure 3: Inconsistent data structure example with linked list

new node with the key is inserted. String Swap simply selects two
keys indicating two strings in a string array and swaps them. The
last two columns of the table will be explained in Section 5.2.

Example

• Create	
  undo	
  log
– Barrier

• Set	
  logged	
  bit
– Barrier

• Make	
  changes
– Barrier

• Unset	
  logged	
  bit
– Barrier



Speculative	
  Persistence	
  [ISCA’17]

• Observation:	
  processor	
  frequently	
  stalls	
  at	
  
pcommit

• Solution:	
  execute	
  speculatively	
  past	
  pcommit
–Mis-­‐speculation	
  is	
  rare:	
  only	
  when	
  failure	
  occurs
– Applies	
  to	
  sequential	
  program	
  also
– Principles
• Apply	
  speculation	
  aggressively
• Make	
  correct	
  speculation	
  fast
• Recovery	
  time	
  is	
  not	
  very	
  important



Evaluation  -­ Overhead

-­ Baseline  =  original  benchmark  without  logging  or  persistence
-­ Adding  sfence nearly  doubles  the  overheads  (33%  vs.  60%)
-­ SP  reduces  the  overheads  from  60%  to  38%  (Log+P+Sf)

The image part with relationship ID rId4 was not found in the file.

23

Log
Log+P

Log+P+Sf
Sp256

Benchmark	
  +	
  undo	
  logging
Log	
  +	
  PMEM	
  instructions

Log	
  +	
  P	
  +	
  sfence (fail-­‐safe	
  version)
Speculative	
  persistence	
  (256	
  entries)

Graph
Btree

AvlTree
Hashmap

LinkedList

RB	
  tree

StringSwap



Observations

• SP	
  only	
  removes	
  pipeline	
  stall	
  overheads	
  
• Logging	
  code	
  overheads	
  remain
• Can	
  we	
  perform	
  logging	
  in	
  hardware?
– No	
  extra	
  code
– Low	
  execution	
  time	
  overhead
– But,	
  not	
  flexible
• It	
  limits	
  transaction	
  count
• It	
  limits	
  transaction	
  size



Alternatives?

• ATOM	
  [HPCA’17]	
  introduced	
  hardware	
  logging
– Automatically	
  logs	
  stores	
  within	
  a	
  transaction
– Hardware	
  treats	
  log	
  updates	
  and	
  stores	
  differently

• We	
  propose	
  Proteus	
  [MICRO’17]
– Software	
  supported	
  hardware	
  logging

Proteus
(NEW)Atom

Mnemosyne
Nv-Heap
PMEM

LOW

HI
G
H

HIGH

LO
W

FLEXIBILITY

PE
RF

O
RM

AN
CE

Figure 1: Logging model taxonomy.

In this paper, we propose a new logging approach, referred to as
Proteus, that achieves the favorable characteristics of both software
and hardware approaches: software controls it’s own log space, it
can support unlimited transactions of arbitrary size, it can manage
its own recovery, and it has low overhead. Our approach introduces
two new instructions that indicate whether a load instruction should
create a log entry and a log flush instruction to write the log entry
to NVM. We presume no additional programming effort beyond
specifying transaction boundaries, since the compiler can generate
instructions appropriately for code inside transactions. Additional
hardware support is introduced, largely within the core, to manage
the execution of these instructions and critical ordering requirements
between logging operations and updates to data to ensure durable
transaction semantics. Proteus avoids any limitation on the size or
number of transactions through judicious design of the interface:
software remains in control of allocating the log space, and hardware
keeps the cost of updating the log low. The taxonomy in Table 1
illustrates each logging model’s pros and cons.

We also consider integrating Proteus with a battery backed WPQ,
allowing the WPQ to be considered part of the persistency domain.
Once writes reach the WPQ they are considered durable. The pres-
ence of a battery-backed WPQ is consequential: it presents a new
opportunity to avoid writes to the NVMM. A key observation that
we exploit is that most logs are created and discarded, because fail-
ures are rare. Thus, we apply an optimization where we distinguish
whether data blocks in the WPQ are there for logging or not. This
distinction allows us to treat them differently, where log blocks are
kept as long as possible in the WPQ and discarded when a trans-
action commits, whereas non-log blocks are allowed to drain from
the WPQ to the NVMM. Although this optimization offers an in-
significant improvement in performance, more importantly it helps
in extending the lifespan of NVMM by avoiding many unnecessary
writes to the NVMM [3–5, 12, 28, 39, 46, 49].

We implemented Proteus on a cycle accurate simulator, MarssX86,
and compared it against state-of-the-art hardware logging (ATOM [18])
and a software only approach. Our experiments show that Proteus
improves performance by 1.44-1.47⇥ depending on configuration,
on average, compared to a system without hardware logging and
9-11% faster than ATOM. A significant advantage of our approach
is dropping writes to the log when they are not needed. On average,
ATOM makes 3.4⇥ more writes to memory. Even though stores are

often not on the critical path, persistent writes are critical given the
store-ordering constraints required for durable transactions.

The remainder of the paper is organized as follows. Section 2 pro-
vides background on memory persistency, new PMEM instructions,
and previous logging implementations for transactions. Section 3
introduces our software supported hardware logging approach. Sec-
tion 4 describes the design of Proteus in detail, Section 5 describes
the evaluation methodology, and Section 6 evaluates our design and
presents our key findings. Section 7 presents a sensitivity study of
alternative architectural configurations and their impacts on perfor-
mance. Section 8 discusses related work. Section 9 concludes.

2 BACKGROUND
2.1 Memory Persistency Models
A persistency model is a specification of the allowable orderings
in which stores persist (i.e. are made durable in the NVMM) with
respect to the order in which stores appear in the program order.
Persistency models give programmers a means to reason about the
order of persists, when persists become durable, and failure-safety.
Previous research proposed several memory persistency models,
starting from a very high level of abstraction based on durable trans-
actions [24, 43], where all stores in a transaction persist entirely
or none of them do. In this model, stores within a transaction are
not ordered. Only the ordering of stores in a transaction with stores
outside the transaction are enforced.

At a lower level of abstraction, strict persistency, epoch persis-
tency, buffered epoch persistency, and strand persistency, have been
proposed [23, 37]. They give programmers a guarantee of the order-
ing in which stores are persisted to the NVMM, regardless of the
presence of durable transactions. Strict persistency [37] piggy-backs
on the sequential consistency model by specifying that a store that
is globally visible must also have persisted. Due to this constraint,
before each store persists to NVMM, all previous stores must have
persisted to NVMM. While it is easier to reason about failure safety
under this model, it comes with significant performance costs of not
allowing write reordering and write coalescing that naturally occur
in write back caches. Epoch persistency relaxes the ordering con-
straint in strict persistency [9, 37]. It allows the programmer to put a
persist barrier which defines an epoch in the program. Stores from
an epoch (i.e. between two persist barriers) can persist in any order,
but they must all persist before the persist barrier. Write coalescing
can occur for stores from the same epoch. At the persist barrier, the
processor may stall waiting for all stores from the epoch to persist.
The buffered epoch persistency model [9, 19] relaxes the persist
barrier by not forcing prior stores to persist right away (hence the
processor may not stall), as long as stores from one epoch persist
prior to any stores from the next epoch. Strand persistency [37], on
the other hand, relaxes the ordering constraints for persists separated
by a strand barrier. No ordering is enforced on persists in different
strands other than those implied by persist atomicity.

Even lower in the abstraction level is a set of primitives that can
be used to specify the ordering of store persistence. Intel PMEM [2]
is an example of this approach. PMEM was designed to be compat-
ible with x86 systems, and includes a few new instructions, such
as clwb, clflushopt, and pcommit. clwb and clflushopt flush a dirty
block from caches to a write pending queue (WPQ) in the memory
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Figure 5: Proteus hardware design.

To achieve higher performance, the LogQ allows log entries to
flush out-of-order. This must be done carefully to ensure correct-
ness, otherwise it can jeopardize the correctness of recovery. For
example, if two logs in the same transaction have the same log-from
address but different data, one must include updates from within the
transaction and cannot be used for recovery. Only the first log in
program order should be used to recover the state. One solution to
prevent use of the wrong entry is to guarantee that the log-to address
is assigned in program order for all log entries. In that way, recovery
knows to use the earliest log entry and later ones are ignored. To
guarantee this invariant, the log-flush determines its log-to address
only after all previous log-flushes in program order have resolved
their log-to addresses. In spite of the dependency among log-flushes
to compute their log-to address, the LogQ can still hide the latency
of logging by enabling the concurrent execution of the actual flushes
to the MC. This turns out to be an important performance advantage
over ATOM since it serializes log entry creation at store completion.

Moving on, a structure called the Log Lookup Table (LLT) can
be seen in the figure. Before explaining the structure, we observe
that there is a significant log temporal locality within a transaction.
That is, for our choice of log size of 32 bytes, it is often the case
that there are multiple stores to different bytes/words of the same 32
bytes region. If we are not careful, each of these stores will create
a sequence of log-load and log-flush, leading to a high number of
logging operations and writes to NVMM. As previously mentioned,

any logging after the first one to a given log-from address is simply
unnecessary overhead.

Eliminating unnecessary logging can be achieved through com-
piler analysis. However, the presence of aliased pointers make com-
piler analysis less effective. We prefer to solve it dynamically by
adding the Log Lookup Table (LLT). When a log entry is deallocated
from the LogQ, the log-from address is added to the LLT. The LLT
keeps the last few log-from addresses in a transaction. If there is a
new log-flush operation, its log-from address is checked against the
LLT. On a match, the log-load and log-flush instructions complete
immediately and are not given a log-to address. On an LLT miss, the
log-load and log-flush proceed as usual, and the log-from address
is added to the LLT replacing an LRU entry, if necessary, from the
LLT. The LLT prevents repeated logging operations to the same log
data. In addition, the LLT helps to reduce the size of the log area
in NVMM, the LogQ, and the LPQ in the MC. For an LLT of 64
entries, the overhead is only 410 bytes.

When a transaction ends, triggered by the tx-end instruction, the
LLT is cleared. This prevents the next transaction from finding stale
data in the LLT and mistakenly believing it has already logged data.
This is one of the primary purposes of tx-end, but there is also
another purpose, as described in the next section.

4.3 NVMM Log Write Removal
Another hardware structure in Proteus is the Log Pending Queue
(LPQ) in the MC. However, before going into that, we will first
assume that the MC only has the Write Pending Queue (WPQ) and
there is no LPQ.

With the introduction of ADR, the WPQ is now considered non-
volatile. Thus, logs can be considered durable when they are accepted
at the WPQ (and before they are written to the NVMM), and ac-
knowledgement of their completion can be sent to the processor
at that time. This has the effect of allowing log-flush to complete
sooner and stores released to the cache sooner.

We take an even greater advantage from ADR through an addi-
tional optimization. Although not in the critical path, writing logs
to the log area in NVMM is expensive due to the added power
consumption and reduced write endurance of the NVMM. We note
that logs are no longer needed after a transaction ends (marked by
the tx-end instruction) because all data updates are guaranteed to be
durable, either in the WPQ or in the NVMM. Thereby, it is important
to note that in the common case logs are written once and never read
again. Hence, logs that have not yet been written to NVMM after the
transaction ends can be flash cleared and never written. This leads to
the insight that we should keep logs in the WPQ until a transaction
ends, if possible, to avoid ever writing them to NVMM. This not
only helps to save power consumption, but also avoids premature
wear-out in the NVMM by significantly reducing the number of
writes.

To achieve this, we must prioritize writing back regular writes
from the WPQ to the NVMM. This requires a priority bit to be
added (or expanded if it is already there) so that log flushes are
de-prioritized and rarely released to the NVMM.

Inevitably, some logs may have been released to the NVMM
before the end of the transaction anyway. These log entries need
to be invalidated by reading and marking these logs invalid in the
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Table 1: The baseline system configuration.

Processor OOO, 3.4GHz, 4 cores, 5-wide issue/retire.
ROB: 224, fetchQ/issueQ/LoadQ/StoreQ:
48/64/72/56

L1I and L1D 32KB, 8-way, 64B block, 4 cycles, private
per core

L2 256KB, 8-way, 64B block, 12 cycles, pri-
vate per core

L3 8MB, 16-way, 64B block, 42 cycles,
shared by all cores

Interconnect 96B/cycle for CPU-L1, 64B/cycle for L1-
L2

BW 32B/cycle for L2-L3, 16B /cycle for L3-
MC

DRAM DDR3-1600 (800MHz), 8GB
1 channel, 16 Banks per rank, 2KB row-
buffer

tCAS-tRCD-tRP-tRAS-tRC-tWR-tWTR-tRTP-tRRD-tFAW
11-11-11-28-39-12-6-6-5-24

NVM tRCD 29 for Read, 109 for Write
Proteus LR: 8 registers, LogQ: 16 entries, LLT: 64

entries (8way), LPQ: 256 entries

studies [8, 18, 19, 30, 37, 42, 48]. For each benchmark, we construct
an operation that is either a node insertion or deletion (except for
String Swap). The operation is wrapped inside a durable transac-
tion. Each benchmark receives an operation type and a key for each
operation from an input file which contains the list of operations
generated randomly. We used multiple data structures per benchmark
to avoid excessive lock contention among multiple threads. In this
work, we assumed that multicore shared memory accesses among
transactions are solved by thread synchronization using locks, which
guarantees mutual exclusion between concurrent transactions. We
believe that this is a separate problem and not the focus of our work.
And hence, each operation must obtain a lock for a data structure
before the operation is performed and no other threads can interrupt
the executing thread in the middle of the update. The table shows
the number of initial operations per thread that are executed first
to populate the data structure, which are then fast-forwarded in the
simulator. To eliminate non-determinism from our experiments, the
pthread barrier is used after initial operations so that all threads run
together as they are simulated.

On each benchmark, we created a manual undo-logging version
and a version for ATOM and Proteus. We found that rebalancing
operations in self-balancing tree benchmarks (AVL tree, B tree, and
RB tree) are challenging for the creation of undo logs because it
is difficult to know which nodes will be modified at the start of
the transaction. Therefore, our manual undo-logging assumes the
worst and logs all nodes that could be modified by the operation.
Furthermore, for simplicity, we assume that memory allocations
and deallocations are performed in a failure-safe way so that our
undo-logging need not cover them.

Table 2: Benchmarks constructed for our study. Except for SS
which has 256 bytes for each string, we size each node to be 64
bytes and align them to cache blocks in all benchmarks. Thus,
to persist one node update, one clwb will be required. InitOps
and SimOps are expressed in terms of the number of operations
that are executed per thread.

Benchmark
(Abbrev.)

Description #InitOps #SimOps

Queue
(QE)

Enqueue/dequeue in 8
queues

20000 50000

HashMap
(HM)

Insert or delete entries
in 16 hash maps

100000 20000

String
Swap (SS)

Swap strings in a string
array (262144 items)

20000 50000

AVL tree
(AT)

Insert or delete nodes in
16 AVL trees

100000 10000

B tree (BT) Insert or delete nodes in
16 B trees

100000 10000

RB tree
(RT)

Insert or delete nodes in
16 RB trees

100000 10000
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Figure 6: Speedup comparison on NVMM, with software log-
ging with PMEM as baseline.

6 EVALUATION
In order to assess the performance benefits of Proteus, we imple-
mented and compared the following schemes: software logging
represented by an Intel PMEM based implementation of WAL, both
with pcommit (PMEM+pcommit) and without it (as the base case),
hardware logging represented by ATOM [18] including all of its
optimizations (ATOM), and software-supported hardware logging
represented by our scheme Proteus (Proteus) and without log write
removal (Proteus+NoLWR). In order to see how close they perform
to an ideal case, we also implemented PMEM but with logging re-
moved (PMEM+nolog). The latter does not provide failure safety
and is devoid of any logging overheads, and thus it is an ideal case.

The result of their speedup over the base case of PMEM with-
out pcommit for all benchmarks and for the geometric mean of
all benchmarks are shown in Figure 6. First, let us observe the
PMEM+pcommit bars. They are significantly below 1.0 in all bench-
marks, with a geometric mean of 0.79. This shows that moving
the MC and WPQ into the persistency domain is very helpful for
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performance. Next, consider the last bars (PMEM+nolog) that are
significantly higher than 1.0, with a geometric mean of 1.51. This
shows that the addition of logging code and its execution causes
very significant performance overheads, whereas its removal speeds
up execution by 51% on average. However, on benchmarks with
complex data structures such as BT and RT, the speedups when
logging is removed are very high: in the case of BT, logging code
removal results in a 2.98⇥ speedup. This is because, for complex
data structures, it is difficult to determine which components of the
data structure will need to be undo logged. For example, tree bal-
ancing operations may affect only a few nodes in the best case or
the entire tree in the worst case. Thus, logging code needs to assume
conservatively that a high number of nodes will be affected by a
transaction.
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Figure 7: The normalized stall cycles of the pipeline front-end.

Now let us examine ATOM and Proteus. ATOM performs quite
well, achieving a 1.33⇥ speedup on average while Proteus achieves
a geometric average of 1.46⇥ speedup. In other words, Proteus
is faster than ATOM by 1.46

1.33 � 1 = 10%. Furthermore, Proteus’s
speedup is only 3.3% lower than the ideal case of no logging. In
ATOM, logs are automatically generated before a store’s comple-
tion. Due to this constraint, the rate at which store operations are
completed is reduced. For ATOM’s design, this is necessary to solve
the dependency between logs and stores. However, Proteus does not
have this limitation because the LogQ manages the dependency. This
allows Proteus to support concurrent logging as long as log-flushes
do not have dependences with preceding stores. In addition, it allows
stores to complete earlier. We found that concurrent logging provides
an important advantage in overall performance.

To analyze the performance difference between ATOM and Pro-
teus, we investigated the stall cycles at the front-end of the pipeline
before instruction dispatch. The front-end could be stalled by a lack
of free resources in the ROB, physical registers, or LSQ. Figure 7
shows the stall cycles normalized to the stall cycles of PMEM+nolog
in the front-end. ATOM has 12% more stalls than Proteus and 16%
more stalls than the ideal case. On the other hand, the number of stall
cycles in Proteus is fairly close to the ideal case, only 4% more stalls.
These results show that ATOM creates more pressure on the pipeline
and eventually stalls it, but Proteus is free from this limitation.

Figure 8 compares the number of NVMM writes for each bench-
mark, normalized to the number of NVMM writes of PMEM+nolog.
On average, ATOM has three times more writes to NVMM (3.4⇥),

compared to PMEM without logging. In benchmarks (QE) and (AT),
it more than quadruples the writes to NVMM. The increase in num-
ber of writes is due to logging (creation and truncation). This is
significant because it cuts the write endurance of NVMM by more
than three quarter. In contrast, Proteus only increases the number of
writes slightly. In the worst case (AT), the increase in writes is still
relatively low, at 6%. The reason for Proteus’s advantage is that most
log updates are held at the LPQ and flash cleared when a transaction
ends, thanks to the fact that the MC is part of the persistency domain.
Thus, most log flushes do not even go to the NVMM.
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Figure 8: The number of NVMM writes, normalized to PMEM
with no logging.

7 SENSITIVITY STUDY
In order to quantify the impact of memory latency on the perfor-
mance of the logging schemes we studied, we ran our experiments
with slower NVMM and faster DRAM.

7.1 Performance on slow NVM
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Figure 9: Speedup comparison on slow NVMM (300ns for
write), with SW logging as baseline(PMEM).

Current NVM read and write latencies, for various technologies,
have not yet reached our previous assumption of fast NVM with
50ns read and 150ns write latencies. In order to see the impact of our
scheme on slower NVM devices, we modeled a higher write latency
at 300ns while keeping the read latency at 50ns. Not surprisingly,
the overall performance of all test cases decreased 10-23% with
slow NVMM compared to faster NVMM, indicating that slow write
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ABSTRACT
This paper presents an algorithm to automatically map code on a
generic intelligent memory system that consists of a host processor
and a simpler memory processor. To achieve high performance with
this type of architecture, code needs to be partitioned and scheduled
such that each section is assigned to the processor on which it runs
most efficiently. In addition, the two processors should overlap their
execution as much as possible.
With our algorithm, applications are mapped fully automati-

cally using both static and dynamic information. Using a set of
standard applications and a simulated architecture, we show aver-
age speedups of 1.7 for numerical applications and 1.2 for non-
numerical applications over a single host with plain memory. The
speedups are very close and often higher than ideal speedups on a
more expensive multiprocessor system composed of two identical
host processors. Our work shows that heterogeneity can be cost-
effectively exploited and represents one step toward effectively map-
ping code on intelligent memory systems.

1 INTRODUCTION
Integrating substantial processing power and a sizable memory on
a single chip can potentially deliver high performance by enabling
low-latency and high-bandwidth communication between processor
and memory. This type of architecture, which is popularly known
as intelligent memory or processor in memory, has been recently
proposed for many systems [8, 12, 13, 14, 16, 19, 22, 24].
Some proposals use this architecture for the main processing unit

in the system. Examples of such systems are IRAM [14], Sham-
rock [13], Raw [24], and Smart Memories [16] among others. Other
proposals, instead, use this architecture for the memory system, re-
placing plain memory chips. In this case, intelligent memory chips
act as co-processors in memory that execute code when signaled by
the host (main) processor. Examples of proposed systems that use
this approach are Active Pages [19], DIVA [8], and FlexRAM [12].
In this second class of systems, we have a heterogeneous mix

of processors: host and memory processors. A host processor is
more powerful, is backed up by a deep cache hierarchy, and suffers
a high latency to access memory. A memory processor is typically
less powerful, has a lower memory latency and, at least in theory, is
significantly cheaper. The question that we address in this paper is:
how do we automatically program these systems?
In previous work on these systems [5, 8, 12, 19], the program-

mer is expected to identify and isolate the code sections to run on
the memory processors. This process is time consuming and er-
ror prone. Furthermore, in our experience, visual inspection of the
code may not reveal much about which processor is best at running
a given code section. In addition, previous work has largely focused

This work was supported in part by the National Science Foundation
under grants NSF Young Investigator Award MIP-9457436, MIP-9619351,
and CCR-9970488, DARPA Contract DABT63-95-C-0097, Michigan State
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on executing sections of code on only a set of identical memory pro-
cessors. This approach is often not much different from running
code on a parallel processor.
Our goal, instead, is to automatically partition the code into ho-

mogeneous sections and then schedule each section on its most suit-
able processor, while maximizing host and memory execution over-
lap. No knowledge of the code should be assumed from the user.
To this end, this paper presents an algorithm embedded in a real

compiler that automatically maps code to a system with both host
and memory processing. To simplify the analysis, we only gener-
ate code for an architecture with a single host and a single memory
processor. Using a set of standard applications and a software sim-
ulator for the architecture, we show average speedups of 1.7 for nu-
merical applications and 1.2 for non-numerical applications over a
single host with plain memory. The speedups are similar and often
higher than ideal speedups on a more expensive multiprocessor sys-
tem composed of two identical host processors. Overall, our work
shows that heterogeneity can be cost-effectively exploited in an au-
tomated manner. It represents one step toward effectively mapping
code on intelligent memory systems.
The rest of the paper is organized as follows: Section 2 overviews

the intelligent memory architecture used; Section 3 presents our al-
gorithm; Section 4 describes the evaluation environment; Section 5
evaluates the algorithm; and Section 6 discusses related work.

2 INTELLIGENT MEMORY SYSTEM
For this work, we assume a server with a memory system enhanced
with processing power. The machine has two types of processors:
the off-the-shelf processors that come with ordinary servers (P.hosts)
and the processors in the memory system (P.mems). To simplify
the analysis, in this work we use a simpler architecture with only
one processor of each type (Figure 1-(a)). Supporting multiple pro-
cessors of each type requires extending the techniques that we will
present, possibly by augmenting them with conventional paralleliza-
tion techniques.
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Figure 1: Intelligent memory architecture considered.
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cessors of each type requires extending the techniques that we will
present, possibly by augmenting them with conventional paralleliza-
tion techniques.

off−the−shelf interconnection

L2 Cache

L1 Cache
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     L1 Cache

       P.host

Processor Chip

DRAM

Memory Chip

(a)

write−back

from/to P.host
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      P.mem
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Figure 1: Intelligent memory architecture considered.

Case Original Loop Partitioned Loop
P.host Code P.mem Code

Fully
Parallel

DO I = 1, 100
B(I) = A(I)

DO I = 1, 70
B(I) = A(I)

DO I = 71, 100
B(I) = A(I)

Distributable
Without
Synchronization

DO I = 1, 100
A(I) = A(I-1)
C(I) = C(I+1)

DO I = 1, 100
A(I) = A(I-1)

DO I = 1, 100
C(I) = C(I+1)

Distributable
With
Dopipe

DO I = 1, 100
A(I) = A(I-1)+B(I)
C(I) = A(I)

DO I = 1, 100
A(I) = A(I-1)+B(I)
IF (MOD(I,4).EQ.0) THEN

WRITEBACK(A(I-3) to A(I))
SIGNAL

ENDIF

DO I = 1, 100
IF (MOD(I+3,4).EQ.0) THEN

WAIT
ENDIF
C(I) = A(I)

Table 3: Partitioning a loop in a module-wise serial region.

problems. Therefore, the compiler must be aware of the data access
patterns and data layouts when it partitions the loops.

3.5.1 Static and Dynamic Partitioning
All the cases in the algorithm for module-wise serial regions can use
static or dynamic information to decide how to partition the module.
The procedure is straightforward except that, because we may now
be assigning small chunks of work, we need to be aware of cache
write-back and invalidation overheads.
As an example, consider Case 1. To make the decision statically,

we use the predicted execution time of the module on P.host ( )
and on P.mem ( ), and the predicted number of iterations .
The obvious approach is to assign the iterations so that the load in
P.host and in P.mem is balanced. This occurs when we assign
iterations to P.host and to P.mem such that:

(3)

In this case, the estimated execution time of both P.host and
P.mem will be . In this formula,

is all the overhead involved in performing write-
back and invalidation actions on P.host’s cache. For simplicity, we
assume that this overhead delays execution of both P.host and P.mem
equally. can be estimated as a function of , the num-
ber of iterations assigned to P.mem. Overall, in our algorithm, we
use this partition unless is larger than , in which case
we execute the whole module on P.host.
To make the decision dynamically, we proceed similarly. In the

first invocation of the loop, we use a certain partition of iterations,
for example and . In this first invocation, the run-
time system measures the overhead-free execution time of these it-
erations, which is and , respectively. In addition, it also
measures the overhead. With these measurements,
the run-time system estimates the average execution time of one iter-
ation on P.host ( ) and on P.mem ( ) as:
and . Based on these values, the run-time system
partitions the loop in its next invocation in the program as follows.
If the loop has iterations, the assignment is:

(4)

unless is larger than , where
. In this case, the whole

module is executed on P.host.

3.6 Compiler Directives
Our system includes source-code compiler directives that allow the
programmer to guide the algorithm. For example, they allow the
programmer to identify modules and specify where and how they
should be run. These directives are useful when the programmer

knows the application well. A sample of our directives is shown in
Table 4.

4 EVALUATION ENVIRONMENT
Compiler
We have implemented the compiler algorithm described in Section 3
so that it can be applied in a fully-automated manner. For the nu-
merical applications, the algorithm is embedded in the Polaris par-
allelizing compiler [3]. Polaris takes Fortran programs and includes
many compilation passes that our algorithm can benefit from. Such
passes perform data dependence analysis, interprocedural analysis,
symbolic analysis, and other operations. For the non-numerical ap-
plications, we cannot use Polaris and, therefore, apply our algorithm
by hand.
Polaris helps identify with high accuracy the cache lines that have

to be written back or invalidated from P.host’s caches when execu-
tion is transferred between P.host and P.mem (Section 2.1). For the
non-numerical applications, since we do not have tools to perform
detailed data dependence analysis, we often conservatively write
back or invalidate more cache lines than necessary.
Our system attempts to produce efficient code. Any module that

is to be run on P.mem is bundled into a subroutine, which simplifies
maintaining data coherence for register values. Moreover, the P.host
and P.mem versions of a module are optimized for the processor
they will run on. Specifically, P.host versions are loop-unrolled so
that more ILP can be extracted dynamically and loads can be over-
lapped. For P.mem versions, we use blocking and loop distribution
to minimize the pollution of the small P.mem cache.
Finally, a special case occurs if the loop in a module contains go-

tos that exit the module. In this case, the compiler transforms these
gotos when the module is made into a subroutine. Specifically, new
targets for these gotos are generated immediately after the loop in the
same subroutine, and the subroutine is given one extra argument that
is set to different values at these target positions. After executing the
subroutine, the argument is checked by the caller of the subroutine
and control branches to the original goto target in the caller accord-
ing to the returned value of the argument. Multiple entries into the
loop in a module are transformed by the compiler in a similar way.

Static Prediction
We set the parameters used in the static performance model to match
the processor and system architectures modeled. Some of the most
important parameters include the number and type of functional
units in the processors, instruction latencies, cache sizes and orga-
nizations, and cache miss latencies. As indicated in Section 3.2, the
model is currently designed only for numerical applications. For
non-numerical ones, we predict based on data from two profiling
runs of the code, one on P.host and one on P.mem, using a different
input set than for the production run.
As indicated in Section 3.2.2, the static performance model re-

turns undefined affinity for a module when the inaccuracy windows
of the estimated P.host and P.mem execution times overlap. Based
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Abstract
This paper introduces the idea of using a User-Level Memory Thread
(ULMT) for correlation prefetching. In this approach, a user thread
runs on a general-purpose processor in main memory, either in the
memory controller chip or in a DRAM chip. The thread performs
correlation prefetching in software, sending the prefetched data into
the L2 cache of the main processor. This approach requires mini-
mal hardware beyond the memory processor: the correlation table
is a software data structure that resides in main memory, while the
main processor only needs a few modifications to its L2 cache so
that it can accept incoming prefetches. In addition, the approach has
wide usability, as it can effectively prefetch even for irregular ap-
plications. Finally, it is very flexible, as the prefetching algorithm
can be customized by the user on an application basis. Our simula-
tion results show that, through a new design of the correlation table
and prefetching algorithm, our scheme delivers good results. Specif-
ically, nine mostly-irregular applications show an average speedup
of 1.32. Furthermore, our scheme works well in combination with
a conventional processor-side sequential prefetcher, in which case
the average speedup increases to 1.46. Finally, by exploiting the
customization of the prefetching algorithm, we increase the average
speedup to 1.53.

1. Introduction
Data prefetching is a popular technique to tolerate long memory ac-
cess latencies. Most of the past work on data prefetching has focused
on processor-side prefetching [6, 7, 8, 12, 13, 14, 15, 19, 20, 23, 25,
26, 28, 29]. In this approach, the processor or an engine in its cache
hierarchy issues the prefetch requests. An interesting alternative is
memory-side prefetching, where the engine that prefetches data for
the processor is in the main memory system [1, 4, 9, 11, 22, 28].

Memory-side prefetching is attractive for several reasons. First, it
eliminates the overheads and state bookkeeping that prefetch re-
quests introduce in the paths between the main processor and its
caches. Second, it can be supported with a few modifications to
the controller of the L2 cache and no modification to the main pro-
cessor. Third, the prefetcher can exploit its proximity to the memory
to its advantage, for example by storing its state in memory. Fi-
nally, memory-side prefetching has the additional attraction of riding
the technology trend of increased chip integration. Indeed, popular
platforms like PCs are being equipped with graphics engines in the
memory system [27]. Some chipsets like NVIDIA’s nForce even in-
tegrate a powerful processor in the North Bridge chip [22]. Simpler

This work was supported in part by the National Science Foundation un-
der grants CCR-9970488, EIA-0081307, EIA-0072102, and CHE-0121357;
by DARPA under grant F30602-01-C-0078; by Michigan State University;
and by gifts from IBM, Intel, and Hewlett-Packard.

engines can be provided for prefetching, or existing graphics pro-
cessors can be augmented with prefetching capabilities. Moreover,
there are proposals to integrate processing logic in DRAM chips,
such as IRAM [16].

Unfortunately, existing proposals for memory-side prefetching en-
gines have a narrow scope [1, 9, 11, 22, 28]. Indeed, some de-
signs are hardware controllers that perform simple and specific op-
erations [1, 9, 22]. Other designs are specialized engines that are
custom-designed to prefetch linked data structures [11, 28]. Instead,
we would like an engine that is usable in a wide variety of workloads
and that offers flexibility of use to the programmer.

While memory-side prefetching can support a variety of prefetching
algorithms, one type that is particularly suited to it is Correlation
prefetching [1, 6, 12, 18, 26]. Correlation prefetching uses past se-
quences of reference or miss addresses to predict and prefetch future
misses. Since no program knowledge is needed, correlation prefetch-
ing can be easily moved to the memory side.

In the past, correlation prefetching has been supported by hardware
controllers that typically require a large hardware table to keep the
correlations [1, 6, 12, 18]. In all cases but one, these controllers are
placed between the L1 and L2 caches, or between the processor and
the L1. While effective, this approach has a high hardware cost. Fur-
thermore, it is often unable to prefetch far ahead enough and deliver
good prefetch coverage.

In this paper, we present a new scheme where correlation prefetch-
ing is performed by a User-Level Memory Thread (ULMT) running
on a simple general-purpose processor in memory. Such a proces-
sor is either in the memory controller chip or in a DRAM chip,
and prefetches lines to the L2 cache of the main processor. The
scheme requires minimal hardware support beyond the memory pro-
cessor: the correlation table is a software data structure that resides
in main memory, while the main processor only needs a few mod-
ifications to its L2 cache controller so that it can accept incoming
prefetches. Moreover, our scheme has wide usability, as it can ef-
fectively prefetch even for irregular applications. Finally, it is very
flexible, as the prefetching algorithm executed by the ULMT can be
customized by the programmer on an application basis.

Using a new design of the correlation table and correlation prefetch-
ing algorithm, our scheme delivers an average speedup of 1.32 for
nine mostly-irregular applications. Furthermore, our scheme works
well in combination with a conventional processor-side sequential
prefetcher, in which case the average speedup increases to 1.46. Fi-
nally, by exploiting the customization of the prefetching algorithm,
we increase the average speedup to 1.53.

This paper is organized as follows: Section 2 discusses memory-side
and correlation prefetching; Section 3 presents ULMT for correla-
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Figure 3. Architecture of a system that integrates the memory processor in the North Bridge chip (a) or in a DRAM chip (b).

request for X is already in queue 1. X is removed from queue 2 to
save computation in the ULMT. Note that it is unclear whether we
lost the opportunity to prefetch X’s successors by not processing X.
The reason is that our algorithms prefetch several levels of successor
misses (Section 3.3) and, as a result, some of X’s successors may
already be in queue 3. Processing X may help improve the state in
the correlation table. However, minimizing the total occupancy of
the ULMT is crucial in our scheme.

Similarly, when a main-processor miss is about to be deposited in
queues 1 and 2, the hardware compares its address against those in
queue 3. If there is a match, the request is put only in queue 1 and
the matching entry in queue 3 is removed.

It is possible that requests from the main processor arrive too fast for
the ULMT to consume them and queue 2 overflows. In this case, the
memory processor simply drops these requests.

Figure 3-(a) also shows the Filter module associated with queue 3.
This module improves the performance of correlation prefetching,
which may sometimes try to prefetch the same address several times
in a short time. The Filter module drops prefetch requests directed to
any address that has been recently issued another prefetch requests.
The module is a fixed-sized FIFO list that records the addresses of all
the recently-issued requests. Before a request is issued to queue 3,
the hardware checks the Filter list. If it finds its address, the request
is dropped and the list is left unmodified. Otherwise, the address is
added to the tail of the list. With this support, some unnecessary
prefetch requests are eliminated.

For completeness, the figure shows other queues. Replies from
memory to the main processor go through queue 4. In addition, the
ULMT needs to access the software correlation table in main mem-
ory. Recall that the table is transparently cached by the memory
processor. Logical queues 5 and 6 provide the necessary paths for
the memory processor to access main memory. In practice, queues 5
and 6 are merged with the others.

If the memory processor is in the DRAM chip (Figure 3-(b)), the
system works slightly differently. Miss requests from the main pro-
cessor are deposited first in queue 1 and then in queue 2. The ULMT
in the memory processor accesses the correlation table from its cache
and, on a miss, directly from the DRAM. The addresses to prefetch
are passed through the Filter module and placed in queue 3. As in
Figure 3-(a), entries in queues 2 and 3 are checked against each other,
and the common entries are dropped. The replies to both prefetches
and main-processor requests are returned to the memory controller.
As they reach the memory controller, their addresses are compared
to the processor miss requests in queue 1. If a memory-prefetched
line matches a miss request from the main processor, the former is

considered to be the reply of the latter, and the latter is not sent to
the memory chip.

Finally, in machines that include a form of processor-side prefetch-
ing, we envision our architecture to operate in two modes: Verbose
and Non-Verbose. In Verbose mode, queue 2 in Figures 3-(a) and (b)
receives both main-processor misses and main-processor prefetch re-
quests. In Non-Verbose mode, queue 2 only receives main-processor
misses. This mode assumes that main-processor prefetch requests
are distinguishable from other requests, for example with a tag as in
the MIPS R10000 [21].

The Non-Verbose mode is useful to reduce the total occupancy of the
ULMT. In this case, the processor-side prefetcher can focus on the
easy-to-predict sequential or regular miss patterns, while the ULMT
can focus on the hard-to-predict irregular ones. The Verbose mode is
also useful: the ULMT can implement a prefetch algorithm that en-
hances the effectiveness of the processor-side prefetcher. We present
an example of this case in Section 5.2.

3.3. Correlation Prefetching Algorithms
Simply taking the current pair-based correlation table and algorithm
and implementing them in software is not good enough. Indeed, as
indicated in Section 2.2, the Base algorithm has two limitations: it
does not prefetch very far ahead and, intuitively, it needs to observe
one miss to eliminate another miss (its immediate successor). As a
result, it tends to have low coverage.

To increase coverage, three things need to occur. First, we need to
eliminate these two limitations by storing in the table (and prefetch-
ing) several levels of successor misses per miss: immediate succes-
sors, successors of immediate successors, and so on for several lev-
els. Second, these prefetches have to be highly accurate. Finally, the
prefetcher has to take decisions early enough so that the prefetched
lines reach the main processor before they are needed.

These conditions are easier to support and ensure when the corre-
lation algorithm is implemented as a ULMT. There are two reasons
for it. The first one is that storage is now cheap and, therefore, the
correlation table can be inexpensively expanded to hold multiple lev-
els of successor misses per miss, even if that means replicating in-
formation. The second reason is the Customizability provided by a
software implementation of the prefetching algorithm.

In the rest of this section, we describe how a ULMT implementation
of correlation prefetching can deliver high coverage. We describe
three approaches: using a conventional table organization, using a
table re-organized for ULMT, and exploiting customizability.
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Figure 4. Pair-based correlation algorithms: Base (a), Chain (b), and Replicated (c).

3.3.1. Using a Conventional Table Organization
As a first step, we attempt to improve coverage without specifi-
cally exploiting the low-cost storage or customizability advantages
of ULMT. We simply take the conventional table organization of
Section 2.2 and force the ULMT to prefetch multiple levels of suc-
cessors for every miss. The resulting algorithmwe call Chain. Chain
takes the same parameters as Base plus NumLevels, which is the
number of levels of successors prefetched. The algorithm is illus-
trated in Figure 4-(b).

Chain updates the table like Base ((i) and (ii)) but prefetches differ-
ently ((iii)). Specifically, after prefetching the row of immediate suc-
cessors, it takes the MRU one among them and accesses the correla-
tion table again with its address. If the entry is found, it prefetches
all NumSucc successors there. Then, it takes the MRU successor in
that row and repeats the process. This is done NumLevels-1 times.
As an example, suppose that a miss on a occurs ((iii)). The ULMT
first prefetches d and b. Then, it takes the MRU entry d, looks-up the
table, and prefetches d’s successor, c.

Chain addresses the two limitations of Base, namely not prefetch-
ing very far ahead, and needing one miss to eliminate a second one.
However, Chain may not deliver high coverage for two reasons: the
prefetches may not be highly accurate and the ULMT may have a
high response time to issue all the prefetches.

The prefetches may be inaccurate because Chain does not prefetch
the true MRU successors in each level of successors. Instead, it
only prefetches successors found along the MRU path. For ex-
ample, consider a sequence of misses that alternates between a,b,c
and b,e,b,f: a,b,c,...,b,e,b,f,...,a,b,c,.... When miss a is encountered,
Chain prefetches its immediate successors (b), and then accesses the
entry for b to prefetch e and f. Note that c is not prefetched.

The high response time of Chain to a miss comes from having to
make NumLevels accesses to different rows in the table. Each access
involves an associative search because the table is associative and,
potentially, one or more cache misses.

3.3.2. Using a Table Re-Organized for ULMT
We now attempt to improve coverage by exploiting the low cost of
storage in ULMT solutions. Specifically, we expand the table to
allow replicated information. Each row of the table stores the tag
of the miss address, and NumLevels levels of successors. Each level

contains NumSucc addresses that use LRU for replacement. Using
this table, we propose an algorithm called Replicated (Figure 4-(c)).
Replicated takes the same parameters as Chain.

As shown in Figure 4-(c), Replicated keeps NumLevels pointers to
the table. These pointers point to the entries for the address of the last
miss, second last, and so on, and are used for efficient table access.
When a miss occurs, these pointers are used to access the entries of
the last few misses, and insert the new address as the MRU successor
of the correct level ((i) and (ii)). In the figure, the NumSucc entries
at each level are MRU ordered. Finally, prefetching in Replicated is
simple: when a miss is seen, all the entries in the corresponding row
are prefetched ((iii)).

Note that Replicated eliminates the two problems of Chain. First,
prefetches are accurate because they contain the true MRU succes-
sors at each level. This is the result of grouping together all the
successors from a given level, irrespective of the path taken. In
the sequence shown above a,b,c,...,b,e,b,f,...,a,b,c,..., on a miss on
a, Replicated prefetches b and c.

Second, the response time of Replicated is much smaller than Chain.
Indeed, Replicated prefetches several levels of successors with a sin-
gle row access, and maybe even with a single cache miss. Replicated
effectively shifts some computation from the Prefetching step to the
Learning one: prefetching needs a single table access, while learning
a miss needs multiple table updates. This is a good trade-off because
the Prefetching step is the critical one. Furthermore, these multiple
learning updates are inexpensive: the use of the pointers eliminates
the need to do any associative searches on the table, and the rows to
be updated are most likely still in the cache of the memory processor
(since they were updated most recently).

3.3.3. Exploiting the Customizability of ULMT
We can also improve coverage by exploiting the second advantage
of ULMT solutions: customizability. The programmer or system
can choose to run a different algorithm in the ULMT for each ap-
plication. The chosen algorithm can be highly customized to the
application’s needs.

One approach to customization is to use the table organizations and
prefetching algorithms described above but to tune their parameters
on an application basis. For example, in applications where the miss
sequences are highly predictable, we can set the number of levels
of successors to prefetch (NumLevels) to a high value. As a result,
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Figure 1: Execution time breakdown of Hash
join [8], Graph BFS [39], and Memcached [17] that
use LLT.

main memory. Approximately 70-75% of the execution time
for Hash join (used by DBMS) [8] and Graph500 BFS [39]
and approximately 35% for Memcached [17] is from LLT. In
this work, we explore how LLT for these workloads can be
accelerated using NDP.

We propose an NDP architecture with multiple memory
modules interconnected through a memory network [31] to
accelerate LLT and exploit the parallelism available across
the multiple memory modules. Our approach does not re-
quire any modification to the existing sequential program-
ming model and CPU cores. Instead, we exploit the pack-
etized interface between the core and the memory modules
to o↵-load LLT for near-data processing using load/store
instructions and simplify the CPU-memory interface. How-
ever, we show that simply o↵-loading LLT does not neces-
sarily improve performance but can actually decrease perfor-
mance because of the additional o↵-chip channel traversals
through the memory network. Thus, we propose NDP-aware
data localization to localize data near the NDP execution
units to minimize o↵-chip accesses and reduce LLT latency.
In addition, to fully exploit the parallelism available with
NDP and improve the LLT throughput, we propose batch-
ing of multiple LLT operations within a single packet (and
across multiple packets) to improve overall performance and
exploit the request-level (or inter-LLT) parallelism.

In particular, the contributions of this work includes the
following:

• We propose a near-data processing (NDP) architecture
that o↵-loads linked-list traversal (LLT) to logic near
memory using load/store instructions without modify-
ing the existing programming model or core microar-
chitecture.

• We propose NDP-aware data localization to minimize
o↵-chip accesses and reduce the execution time of LLT.

• We leverage batching multiple LLT operations that ex-
ploits the inter-LLT parallelism and the parallelism
available through the memory network.

• Our evaluation shows that our proposed LLT o✏oad-
ing for NDP can increase performance by 5.9⇥ and en-
ergy e�ciency by 2.8⇥ compared with host-processing.

2. BACKGROUND AND RELATED WORK

2.1 Hybrid Memory Cube (HMC)
3D integration technology allows the dies fabricated by

two or more types of processes to be stacked within a package
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Figure 2: High-level block diagram of hybrid mem-
ory cubes (HMCs) and the logic layer, intercon-
nected through memory network.

by TSVs (Through-Silicon Vias). A representative DRAM
architecture that exploits the 3D integration technology is
HMC (Hybrid Memory Cube) [24], which stacks a logic die
and DRAM dies within a package to improve the energy
e�ciency, bandwidth, and scalability in capacity of main
memory systems. Multiple DRAM dies are stacked and di-
vided into vertically aligned partitions that are referred to
as vault in HMC, as shown in Figure 2. Each vault is con-
nected to the corresponding memory controller located at
the logic layer through TSVs. The HMC logic die also has
high-speed links through which the memory controllers com-
municate with other memory modules and the CPU sockets
and a switch or an on-chip interconnection network connects
these components (the high-speed links and the memory
controllers) together. Even with the existence of the links,
the controllers, and the interconnect, the logic die has addi-
tional area to hold processing elements for acceleration [37,
44]. HMC modules, each becoming a router, can be inter-
connected together to scale the system and create a memory
network [31].

2.2 Linked List
Four di↵erent types of linked-list implementation that we

consider in this work are shown in Figure 3 and summarized
in Table 1. We define an item as the data element that is
being stored in the linked-list and a node as an element that
contains the item(s) and a pointer to the next node. The
most conventional type of linked-list is shown in Figure 3(a).
A single item is stored within each node with a pointer to
the next node. Memory e�ciency of this type of linked-
list can be poor and it also results in a lot of linked-list
traversals. However, if an array structure is inappropriate
and if neither the size of the items nor the number of items
is not known, this data structure can be used. Key-value
stores, such as Memcached [17], use this data structure to
store various types of data objects.
Figure 3(b) provides a block diagram of linked-list of ar-

rays where each node contains an array of items. Since an
array structure is used, the item size needs to be fixed and
the items within the node are stored contiguously in mem-
ory. In addition, a single pointer is only needed for each
array – thus, this implementation reduces the memory re-
quirement and cache locality can be exploited. Hash join [11]
is an example that uses this linked-list implementation.
If the total number of items is fixed in addition to the

item size, linked-list of arrays can be implemented without
a bucket array (Figure 3(c)). Since the pointer reference
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Figure 5: Data access in host-processing and NDP
with di↵erent localization degrees.

minimize the memory network hop count. We then pro-
pose batching multiple LLT operations together to exploit
the NDP parallelism available within the logic layer of the
memory module.

4.1 NDP-aware data localization
In this section, the number of memory groups (M) is de-

fined as the number of main memory partitions and repre-
sents the degree of locality in the NDP system. Our baseline
NDP for LLT is shown in Figure 5(b) without any localiza-
tion (M = 1). As M increases, the degree of localization
increases – for example, with M = 16 (and 16 memory
modules in Figure 5(d)), the size of a memory group is a
single memory module and o↵-chip memory network traver-
sal is minimized; however, there can be accesses to di↵erent
vaults within the memory module. If M is further increased
to 256 (assuming 16 vaults within each memory module),
the locality is further confined to each vault and minimize
movement within a memory module as well. While increas-
ing M improves locality, it reduces the amount of memory
capacity per memory group and trade-o↵ is discussed later
in Section 5.3.

In our proposed NDP system, the unit of o↵-loading is
a single linked-list traversal. For NDP-aware data local-
ization, we store the linked-list to “physically neighboring”
memory.6 To achieve this locality, we modify the application
and memory allocation function. We first design a memory
manager that allocates storage memory that is divided into
partitions with each partition assigned to one of the mem-
ory groups based on the physical address of the partition. In
a fine-grain interleaved multi-channel memory system that
we assume, the partitioning size should be smaller than the
address interleaving granularity (ITLV ) to make sure each
partition is not interleaved across non-neighboring physi-
cal memory. We achieve data localization by mapping each
memory group to physically neighboring memory (managed
by OS and the memory manager) similar to NUMA-aware
memory allocation, and by storing a linked-list to a single
memory group (managed by application).

6Depending on the value of M , the linked-list can be stored
in the same memory vault, memory module, or neighboring
memory modules.

(a) Type 1,2,3 (b) Localization of Type 1,2,3

(c) Type 4

(d) Localization of Type 4

Figure 6: NDP-aware data localization with 4 mem-
ory groups for the four di↵erent linked-list types.

Figure 6(a,b) show how to localize the linked-list Type 1,
2, and 3. The location of linked-list (i.e., index) is decided by
index calculation, such as hashing. Items having hash value
(hv) n are normally stored to the nth linked-list as shown
in Figure 6(a). However, we change this direct mapping as
items having index n are stored to a memory groupm using a
modulo operation m = n mod M , as shown in Figure 6(b).
When application requests memory allocation to store an
item, the index value n is given together as a parameter
to the memory manager. The memory manager returns a
memory address from memory group m, and the item is
stored in that particular memory group.
Figure 6(c,d) show how to localize the linked-list Type 4,

which stores next pointer and item in di↵erent arrays – next
array and item array. In Graph500 [39], adjacency list is
implemented as a linked-list within the next array, and item
array stores the edge information. To localize the linked-
list on the next array for NDP, we relocate the location
(i.e., index) of the next pointers within an interleaving set,
which is defined as ‘ITLV ⇥ M ’. Next pointer connected to
source vertex n, where n mod M = m, is attempted to be
relocated to a specific index allocated in the memory group
m. For example, when edge x is connected to the source
vertex n, where x has an index distance ‘q ⇥ ITLV + r’
from the boundary of the interleaving set, x is stored in
the next array and next[x] again stores the next connected
edge, as shown in Figure 6(c). To localize for NDP, we try
to move next[x] to next[x0], where x

0 has an index distance
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Bulk	
  Data	
  Operations

• Bulk	
  data	
  copying	
  and	
  initialization	
  (BCI)
– Memory-­‐to-­‐memory	
  bulk	
  data	
  transfers

• Kernel	
  libs:	
  copy_from_user,	
  memcpy,	
  etc.
• User	
  libs:	
  memcpy,	
  memset,	
  etc.

– Cache-­‐to-­‐cache	
  bulk	
  transfers
– Processor-­‐to-­‐accelerator	
  bulk	
  transfers

• Examples	
  of	
  memory-­‐to-­‐memory	
  BCI
– TCP/IP	
  processing

• Apache	
  web	
  server	
  spends	
  20%	
  time	
  on	
  BCI
– File	
  operations
– Page	
  initialization



Current	
  M2M	
  BCI	
  Implementation

PowerPC
loop:

lwz r1,	
  0(r2)
addi r2,	
  r2,	
  32
stw r1,	
  0(r3)
addi r3,	
  r3,	
  32
bdnz loop

X86
mov	
  esi,	
  src
mov	
  edi,	
  dst
mov	
  ecx,	
  len
rep	
  movsd

S/390
la	
  r2,	
  source_addr
la	
  r3,	
  source_len
la	
  r4,	
  dst_addr
la	
  r5,	
  dst_len
mvcl	
  r2,	
  r4

Two  flavors

Copy	
  instruction	
  (expanded	
  into	
  implicit	
  loop of	
  loads	
  &	
  stores)

Explicit	
  loop of	
  loads	
  &	
  stores



Current	
  BCI	
  Performs	
  Poorly

• TCP/IP	
  processing	
  has	
  become	
  the	
  major	
  
performance	
  bottleneck	
  of	
  networking.

• Why	
  so	
  poorly?
– Granularity	
  inefficiency
– Pipeline	
  inefficiency
– Cache	
  affinity	
  inflexibility



FastBCI [PACT09]

• An	
  efficient	
  architectural	
  support	
  for	
  BCI
• New	
  instruction:

– Reg_SRC/Reg_DEST:	
  specify	
  src/dst base	
  addresses
– Reg_PARAM:	
  specify	
  size	
  (4KB	
  max)	
  and	
  cache	
  affinity	
  options

• On	
  chip	
  engine	
  instead	
  of	
  implicit	
  loop

BLKCPY Reg_SRC, Reg_DEST, Reg_PARAM



FastBCI Benefits

• Granularity	
  efficiency
– Reduce	
  99.8%/87.5%	
  TLB/cache	
  accesses

• Pipeline	
  efficiency
– Early	
  Commit	
  and	
  Non-­‐blocking

• Cache	
  affinity	
  flexibility
– Options:	
  Cacheable,	
  Non-­‐cacheable	
  and	
  Cache	
  Neutral
– Cache	
  neutral:	
  No	
  new copying	
  data	
  brought	
  into	
  cache

• Tends	
  to	
  produce	
  robust	
  performance

• Roughly	
  equal	
  performance	
  gains	
  from	
  all	
  three.	
  Total	
  2-­‐
3x	
  faster



Granularity	
  Efficiency

Increase	
  TLB/Cache	
  access	
  granularity
•TLB	
  access	
  at	
  page	
  granularity

•Reduce	
  99.8%	
  TLB	
  accesses

•Cache	
  access	
  at	
  cache-­‐block	
  granularity

•Reduce	
  87.5%	
  cache	
  accesses



Pipeline	
  Efficiency

BCI	
  takes	
  long	
  time,	
  FastBCI	
  instruction	
  
blocks	
  ROB	
  based	
  instruction	
  commit

Early	
  commit:	
  FastBCI instruction	
  commits	
  once	
  
copying	
  regions	
  exception	
  validation	
  is	
  completed

Non-­‐blocking:	
  copying	
  progress	
  is	
  tracked	
  per	
  
block,	
  instructions	
  dependent	
  on	
  completed	
  
blocks	
  are	
  committable.



Another	
  Avenue:	
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  Switching	
  NoC
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A!router!does!not!necessarily!have!to!choose!between!packet!switching!or!circuit!switching.!
Figure!3!illustrates!a!hybrid!router!that!supports!both!switching.!The!hybrid!router!replaces!the!
second!virtual!channel!by!circuit!switching.!Circuit!switching!in!the!figure!uses!the!second!
virtual!channel,!but!it!is!also!possible!to!keep!the!second!virtual!channel!the!same!but!add!a!
thid!channel!for!circuit!switching.!The!figure!shows!buffers!are!eliminated!because!of!the!fixed!
connection!resulting!from!circuit!switching.!The!figure!shows!a!particular!configuration!where!
the!first!input!port!is!connected!directly!to!the!last!output!port,!using!the!second!virtual!
channel.!A!variation!of!the!hybrid!router!shown!in!Figure!3!has!been!proposed!in!literature.!!
!

Circuit�switched
channel
Physical

Crossbar
Output
portsports

Input

Switch

Control (routing, arbitration, scheduling)

Virtual channel

!
Figure(3:(Circuit(switching(virtual(channel,(currently(configured(to(connect(the(first(input(port(to(the(last(

output(port.(

Despite!the!significant!improvement!in!energy!efficiency!of!circuit!switched!routers,!they!are!
not!used!in!current!NoC,!because!it!suffers!from!fundamental!drawbacks:!!

1. High(set(up(latency.!It!takes!a!roundHtrip!message!to!establish!a!circuitHswitch!route.!!
2. Low(throughput.!An!established!circuitHswitch!route!may!not!be!fully!utilized!for!data!

transfer,!but!it!blocks!packets!from!using!the!reserved!resources!along!the!route.!!
!
II. Summary(of(the(Invention((Maximum(of(150(words)(

$
In(this(invention,(I(describe(a(method(that(allows(a(hybrid(switched(network(to(improve(
energy(efficiency(significantly(without(sacrificing(much(performance.!The!key!is!to!support!
bulk!data!transfer!during!a!thread!migration,!and!to!use!circuit!switching!for!this!purpose.!The!
second!component!is!a!method!how!to!provide!thread!migration!hint!in!order!to!hide!the!high!
set!up!cost!of!circuit!switching.!!

!
III. How(is(This(Invention(Made(and(Used(

!
As!discussed!earlier,!the!two!key!drawbacks!of!circuit!switching!is!the!high!set!up!latency!and!
low!throughput.!These!two!drawbacks!are!serious!enough!to!prevent!current!NoC!designs!
from!using!circuit!switching.!The!key!reason!for!this!is!that!current!NoC!design!handles!small!
messages!that!can!hardly!justify!the!high!set!up!cost!of!circuit!switching.!This!is!due!to!

PClk

CClk

Packet-­switched  
Request

Circuit-­switched
Acknowledge  

Circuit-­switched  
Data  Transmission

8x8  Circuit-­
switched  NoC

CClk

Src Dest0 1 n
Routers

Routers
2mm  links

Source:	
  Borkar,	
  PACT	
  2011	
  keynote



Packet	
  vs.	
  Circuit	
  Switching

• CS	
  latency	
  within	
  5%	
  of	
  PS	
  latency	
  with	
  high	
  
hop	
  count	
  and/or	
  large	
  messages
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traditional!coherence!protocols!that!transfer!at!most!1!cache!block!at!a!time,!limiting!the!
message!size!to!64!bytes.!Hence,!the!high!set!up!latency!of!establishing!a!circuit!switched!
route!cannot!be!amortized!over!a!large!number!of!byte!transfer.!!
!
In!this!report,!I!combine!circuit!switching!for!bulk!data!transfer!protocol!for!thread!migration.!
When!a!thread!migrates!from!one!core/cache!to!another!core/cache,!a!large!amount!of!data!
needs!to!be!transferred!to!the!new!cache!from!the!old!cache.!In!the!current!system,!this!
occurs!in!a!pieacemeal!fashion!(one!block!at!a!time)!on!demand!(based!on!each!cache!miss!
that!occurs!in!the!new!cache).!Applying!circuit!switching!to!traditional!systems!do!not!produce!
much!benefit!due!to!the!small!message!transfers.!Applying!bulk!data!transfer!between!caches!
do!not!yield!much!energy!efficiency!improvement!if!packet!switching!is!used.!Thus,(the(
combination(of(these(two(methods(produce(a(synergy,!that!may!be!nonHobvious!if!each!
method!is!applied!individually.!!
!
Before!I!continue,!let!us!first!compare!the!latency!incurred!by!circuit!switching!vs.!packet!
switching.!Table!1!shows!an!example!of!various!message!sizes!and!latency!for!packet!switching!
vs.!circuit!switching,!for!various!cases:!short!distance!(2!hops)!vs.!medium!distance!(6!hops),!
narrow!link!(2!bytes)!vs.!wide!link!(16!bytes),!and!small!message!(64!bytes),!medium!message!
(1KB),!and!large!message!(64KB).!!
!

Table(1:(Latency(of(sending(a(message(of(various(sizes,(over(short((2(hops)(and(medium((6(hops)(distance,(

assuming(16Lbyte(link(width((top),(and(2Lbyte(link((bottom).(Yellow(cells(indicate(speed(difference(of(less(

than(15%.((

Message(size,(

distance((16BLlink)(

Uncontended(Latency((number(of(clock(cycles)(( How(much(

slower?(Packet(Switching((PS)( Circuit(Switching((CS)(

64B,!2!hops! 13! 27! 108%!
1KB,!2!hops! 73! 87! 19%!
64KB,!2!hops! 265! 279! 5%!
64B,!6!hops! 33! 75! 127%!
1KB,!6!hops! 93! 135! 45%!
64KB,!6!hops! 285! 327! 15%!

Message(size,(

distance((2BLlink)!
Uncontended(Latency((number(of(clock(cycles)! How(much(

slower?!Packet(Switching((PS)( Circuit(Switching((CS)(

64B,!2!hops! 41! 55! 34%!
1KB,!2!hops! 514! 535! 4%!
64KB,!2!hops! 2050! 2071! 1%!
64B,!6!hops! 54! 103! 91%!
1KB,!6!hops! 534! 583! 9%!
64KB,!6!hops! 2070! 2119! 2%!

!
From!Table!1,!we!can!see!that!while!circuit!switching!is!always!slower!than!packet!switching!
(due!to!the!initial!latency!to!set!up!a!route),!circuit!switching’s!speed!disadvantage!!vs.!packet!
switching!declines!when:!!

1. Message!becomes!larger.!!
2. Link!width!becomes!narrower.!This!will!increasingly!become!the!case!in!the!future!as!

the!NoC!increases!in!dimension!(radix)!to!reduce!distance!and!increase!bisection!
bandwidth.!!



Conclusions

• Future	
  architecture	
  has	
  both	
  deep	
  cache	
  
hierarchy	
  as	
  well	
  as	
  heterogeneous	
  memories

• Increasingly	
  important
– Locality	
  optimization
– Persistent	
  memory	
  (with	
  NVMM)
– Processing	
  in	
  Memory
– Bulk	
  data	
  transfer/operation



Thank	
  you

I’d	
  be	
  happy	
  to	
  answer	
  questions


