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ABSTRACT
Advancements in packaging technology have made in-package
high- bandwidth 3D memory a reality. Traditional PIM approaches
have explored exploiting the higher bandwidth but limited amount
of compute available in external 3D memories to reap performance
benefits. By contrast, the feasibility of having memories in the same
package as the centralized compute units has made novel process-
ing in-memory architectures viable within exascale nodes. A single
such node architecture can range from a centralized compute ele-
ment with in-package memory connected to an external memory
network to multiple processing-in-memory elements with uniform
or non-uniform memory-to-compute ratios. However, the opti-
mal distribution of compute and memory for different applications
remains an open question to be evaluated. Distributing applica-
tions across multiple compute elements could increase the off-chip
accesses but may reduce contention. This paper evaluates differ-
ent non-uniform processing in-memory (NUPIM) architectures for
GPGPU applications. We identify and discuss the factors that in-
fluence architecture choices for a given application. We observe
that for memory-intensive irregular benchmarks, non-uniformly
distributed processing in memory architectures perform better than
centralized compute even though the former causes higher off-chip
accesses.

1 INTRODUCTION
The growing demand for computational capability in scientific
and high-performance computing have made exascale systems a
necessity [20]. In such large-scale systems, data-movement is a
significant concern [7]. The emergence of 3D stacked memory has
provided opportunities to place compute units within the logic layer
of the memory stack. These in-memory compute units have greater
bandwidth provided by the through-silicon vias (TSVs) between
stacked logic and memory layers. Recent work has shown that
processing-in-memory (PIM) architectures, which place compute
units in external memory stacks (Fig. 1) can potentially provide
performance benefits owing to the higher memory bandwidth avail-
able compared to the central compute unit. Placing computations
directly into external memory stacks can reduce or eliminate data
movement across chips. However, traditional PIM approaches have
been limited in the amount of compute capabilities that can be
realized in logic layers of existing memory stacks.

Improvements in die-stacking capabilities are projected to allow
us to integrate more compute and high-bandwidth 3D stack mem-
ory within the same package. Such advancements are expected to
be widely used to meet the bandwidth requirements of an exas-
cale node [22]. The feasibility of such technology opens up many
new possibilities for future exascale node architectures. However,
it also introduces new types of design questions and tradeoffs. As-
suming an equal amount of total compute capability, a node could
be architected as a single large compute element with in-package

memory, connected to an external memory network (to meet over-
all memory capacity requirements) as shown in Fig. 2a. Or it could
have multiple compute elements with non-uniform (Fig. 2b) or
uniform (Fig. 2c) memory-to-compute ratios. In general, exascale
nodes can have a non-uniform processing-in-memory (NUPIM)
architecture consisting of multiple packages of varying sizes each
having different proportion of memory and compute integrated
together. However, evaluating the different architecture options
and their application-specific benefits and tradeoffs is not trivial.

For irregular applications with large amounts of data-dependent
accesses and page-sharing, a centralized compute (Fig. 2a) archi-
tecture might appear as suitable choice since it would result in
minimum off-chip accesses. However, the impact of contentions in
the central compute element can negate any performance improve-
ment. Architectures with multiple compute elements might help
reduce contention but could potentially result in a higher number
of remote accesses. Depending on the application’s sensitivity to-
wards off-chip accesses and contentions, some architectures will
perform better than others. However, if the application is regular
and can be partitioned, the effect of contention and off-chip accesses
are no longer conflicting. There are many factors that need to be
considered when choosing a suitable architecture for a range of
applications.

In this paper, we evaluate different architectures and study the
factors that determine the suitability of an architecture for a given
application. Our evaluation uses GPGPU applications and Stream-
ing Multiprocessors (SMs) as our compute units. However, the
insights obtained from this work will apply for NUPIM architec-
tures within exascale nodes with arbitrary types of compute units
(CPUs, GPUs, accelerators).

The rest of the paper is organized as follows: Section 2 pro-
vides an analysis of memory access patterns of applications and
discusses the suitability of architectures based on the same. Section
3 presents the various architectural possibilities that are expected
to be feasible by the anticipated time-frame of exascale systems.
Our experimental setup and results are presented in Section 4. The
paper concludes with a summary and an outlook on future work in
Section 6 after discussing the related work in Section 5.

Figure 1: PIM Architecture.



(a) Centralized compute. (b) Non-uniform multi-element. (c) Uniform multi-element.

Figure 2: Potential exascale node architectures.

2 APPLICATION ANALYSIS
In order to study and understand the suitability of an architecture
for any application, it is necessary to understand the memory access
pattern of the application. Applications with different inter-thread
sharing behavior will perform differently across different architec-
tures. To study the memory access pattern, we plot in Fig. 10 the
IDs of threadblocks (Y-axis) launched in a kernel against the page
(4kB each) numbers accessed by the threadblocks. We classify the
benchmarks into two categories: low and high sharing based on
the pre-dominant behavior exhibited by the benchmarks. In reality,
different kernels within the same benchmark can exhibit different
behaviors as shown later. Fig. 3a and Fig. 3b show the behavior of
two representative benchmarks from each category.

Fig. 3a shows the memory access pattern of the k-Nearest Neigh-
bour (NN) benchmark. The plot shows that pages upto 534k are
regularly accessed by the threadblocks starting at ID 0, at which
point they wrap around and subsequent pages are accessed again
starting from threadblock ID 0. There are 2 major observations
to note from the graph. Firstly, the benchmark has high locality
i.e. there is not much page sharing among threadblocks. Secondly,
memory footprint scales with the number of threadblocks. Such pat-
terns are typical due to the regular nature of the benchmark. Since

(a) NN

(b) BFS (Z6Kernel)
Figure 3: Benchmark memory access patterns.

the memory footprint scales with threadblocks, the working set of
such applications will eventually spill to external memory in a cen-
tralized compute architecture. However, lack of inter-threadblock
sharing allows the threadblocks and its corresponding working
set to be distributed among multiple elements, without increasing
remote accesses significantly.

Fig. 3b shows the access pattern of the Z6kernel from the BFS
benchmark. As can be seen from the graph, pages from 524k to
532k are accessed regularly by the threadblocks, wrapping around
at 526k. The pages from 523k to 534k are accessed irregularly by
the threadblocks. To better understand the extent of page sharing
in the lower versus upper memory regions in this benchmark, we
further plot the benchmark’s communication matrix (Fig. 4). A
Communication matrix is a NxN matrix in which each element
(i ,j) represent the total number of shared page accesses made by
threadblocks i and j. Here, N is the total number of threadblocks
launched. In our representation, the darker the element in the com-
munication matrix, the higher the amount of page sharing. Fig. 4
shows the communication matrix for BFS (Z6kernel). We see that
there is significant page sharing among different threadblocks. Such
patterns result from the abundance of data-dependent accesses. For
such applications, distributing threadblocks and their correspond-
ing working set among multiple elements is difficult and usually
results in increased remote accesses. An architecture with central-
ized compute might be better since it will result in minimum remote
accesses.

3 ARCHITECTURES EVALUATED
Previous works have shown that in-package high-bandwidth mem-
ory will be essential for an exascale node, but that external memory
will also be required to meet the capacity demands [22]. Under the
assumption of equal amounts of total memory and compute per
node, all SMs can be centrally placed, or distributed among external
memory stacks in uniform or non-uniform manner. Based on this,
we evaluate the following 3 types of architectures (Fig. 5):

(1) Centralized compute (Fig. 5a): All the SMs are placed in a
central package with in-package high bandwidth memory
and an external memory network.

Figure 4: BFS communication matrix.2



(2) Non-uniform multi-element (Fig. 5b): Multiple processing-
in-memory elements are interconnected together. The ele-
ments have different memory-to-compute ratios. We specifi-
cally evaluate the following two configurations combining
a large centralized compute with in-package memory (big)
connected to external memory stacks with no or small num-
ber of in-memory SMs in their logic layer (little):
• BigLittle2: This configuration has in-memory SMs in both
the memory stacks at the first level of the memory net-
work, but no compute in levels beyond.

• BigLittle4: This configuration has in-memory SMs in 4
memory stacks present at the first and second level of the
memory network.

(3) Uniform multi-element (Fig. 5c): Multiple elements having
identical memory-to-compute ratio are interconnected to-
gether. In order to show an extreme case of remote accesses,
we envision this architecture as uniformmemory stacks with
compute interconnected with each other instead of a large
centralized package with memory connected to external
stacks (all having the same memory-to-compute ratio).

Data mapping significantly affects the performance of the ap-
plication. Previous work [18] suggested that a locality-based data
mapping suits regular benchmarks with low page sharing. Hence,
while evaluating benchmarks with low page sharing, we map data
based on the locality policy as presented in [18]. We use mem-
ory traces to statically place the pages into appropriate memory
stacks. Other work has demonstrated that interleaving data pro-
vides best performance for irregular benchmarks with high page
sharing [8]. For such benchmarks, we interleave data across con-
trollers in chunks of 256 Bytes in our evaluation.

(a) Centralized compute.

(b) Non-uniform multi-element.

(c) Uniform multi-element.

Figure 5: Node architectures evaluated.

4 EXPERIMENTS AND RESULTS
The exact simulator parameters for different configurations evalu-
ated are shown in Table. 1. We use GPGPUSim v3.2.2 [6] for our
experiments. The simulator has been modified to replicate our dif-
ferent configurations. We evaluate different architectures using
memory-intensive benchmarks from Rodinia [21], Parboil [13] and
Lulesh [11] benchmark suites, including four benchmarks in the
high (BFS, Lulesh, Btree, Spmv) and one benchmark in the low (NN )
sharing categories. The list of benchmarks used in our evaluation
is provided in Table. 2.

In order to keep simulation time reasonable, we simulate a
smaller configuration compared to a typical exascale node con-
figuration. We model 3D stack memory as Hybrid Memory Cube
(HMC) [5], since it allows integration of units into a network [22].
The capacity of each stack is the same and total memory is equal
to the memory footprint of the application evaluated. We assume
up to 2 GTX480 SMs fit within the logic layer of memory stacks.
Considering the area of Hybrid Memory Cube (HMC) [26] and vault
controllers [3], our calculations show that 2 GTX480 SMs [1] can
comfortably fit within the logic layer.

4.1 Performance Results
Fig. 6 shows the speedup of benchmarks executed in different ar-
chitecture configurations normalized to the centralized compute
architecture. Fig. 7 and Fig. 8 present the number of cache lines
moved over the off-chip link (data movements) and the number of
memory stalls due to interconnect congestion, both normalized to
central compute results, for different architectures.

As expected, benchmarks with low sharing (NN ), perform better
(1.78x) in a uniform multi-element architecture than a centralized
compute. The threadblocks and its corresponding working set can
be partitioned owing to the strong locality andweak sharing demon-
strated by these benchmarks. This is evident from the lower remote
accesses and interconnect stalls compared to centralized compute.
However, the actual speedup while using a practical thread and
data mapping policy is expected to be less.

For benchmarks with high sharing (BFS, SPMV, Btree, Lulesh),
we see that BigLittle2 and BigLittle4 architectures perform better
than both centralized compute and uniform multi-element architec-
tures. BigLittle2 has an average speedup of 1.06x (up to 1.10x), while
BigLittle4 has an average speedup of 1.13x (up to 1.19x) over cen-
tralized_compute. As expected from studying their memory access
patterns, distributing these applications among multiple elements
results in higher remote accesses. BigLittle2 has an average 1.07x
higher off-chip hops compared to centralized compute, while BigLit-
tle4 and uniform multi-element architectures have 1.20x and 3.47x
higher average off-chip hops. However, the reduction in intercon-
nect contention offsets the adverse performance impact caused by
the higher remote accesses. BigLittle2 has 0.91x lower interconnect
stalls due to congestion on average, while BigLittle4 and uniform
multi-element architectures have 0.83x and 0.98x lower average in-
terconnect stalls. The reduction in contention dominates the effect
of higher off-chip accesses for BigLittle2 and BigLittle4 architectures.
However, off-chip accesses for a uniform multi-element architec-
ture are too large to be offset by reductions in contention, resulting
in performance degradation compared to centralized compute.
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Table 1: Simulation parameters.

Architectures
Centralized compute # SMs 64

# Clusters 8
In-pkg DRAM stacks 4

DRAM stacks w/o compute 4
Multi-unit # SMs 64

homogeneous # Units 8
Clusters/unit 1

In-pkg DRAM stacks/unit 1
Multi-unit # Total SMs 64

heterogeneous SMs/Little unit 2
(bigLittle2,bigLittle4) Clusters in big 8

Clusters/Little unit 1
In-pkg DRAM stacks in big 4

DRAM stacks/Little 1
bigLittle2 # SMs in big 60

# Little units 2
DRAM stacks w/o compute 2

bigLittle4 # SMs in big 56
# Little units 4

DRAM stacks w/o compute 0
SM Configuration

Core configuration 1.4Ghz, 48 warps/SM, 32
threads/warp, 32768 register,

GTO warp scheduler, 8
CTAs/SM, 48kB shared

memory [2]
Private L1 cache 16kB, 4-way, 128B block size[2]
Shared L2 cache 768kB, 8-way,128B block size

[2]
Bandwidth

Interconnect Crossbar, flit size=32B [2]
In-pkg bandwidth 231 GB/s per stack
Off-chip bandwidth 115.5 GB/s

Memory Stack
Memory stack
configuration

8 memory stacks, 16
vaults/stack, 16 banks/vault, 64

TSVs/vault [15]
DRAM Scheduling

policy
FR-FCFS

DRAM Timing tCL=12, tRP=12, tRC=40,
tRAS=28, tCCD=2, tRCD=12,

tRRD=6, tCDLR=5, tWR=12 [2]

Table 2: Benchmarks evaluated.
Benchmark Page sharing Input

NN Low 5120k
BFS High Graph1MW

Lulesh High Default (first 26 kernels)
SPMV High Large (first 5 kernels)
Btree High Default (1M)

Figure 6: Performance speedup over centralized compute.

Figure 7: Off-chip hops.

Figure 8: Interconnect congestion.

4.2 Deepdive: Lulesh
We take a closer look at the speedup obtained on each architec-
ture while executing the Lulesh benchmark. The speedup for each
Lulesh kernel evaluated is shown in Fig. 9. Not surprisingly, not
all kernels get similar speedup for the BigLittle4 architecture. For
example, CalcPressureForElems and UpdateVolumeForElems kernels
perform equally good in a centralized compute architecture as
compared to BigLittle4. Furthermore, it can be seen that BigLittle2
performs equally good for CalcLagrangeElementsPart2 and Calc-
PressureForElems kernels, and it outperforms BigLittle4 in the Ap-
plyAccelerationBoundaryCondition kernel. The reason is less con-
tention. Fig. 10a shows the memory access pattern for Integrat-
eStressForElems kernel of Lulesh. The pages are accessed irregularly
by the threadblocks, causing high contention and thereby favouring
BigLittle4 architecture over others. However, the pages are accessed
regularly in CalcLagrangeElementsPart2 kernel as shown in Fig. 10b,
resulting in less contention. For such kernels, a BigLittle4 architec-
ture is not suitable because even if the performance appears similar,
off-chip accesses are higher in BigLittle4 compared to BigLittle2
and centralized compute architectures. Recent studies have shown
memory I/O as major contributor to power consumption [23]. As
such, executing the above benchmarks in a BigLittle4 architecture
can be expected to not only result in no performance gain, but also
higher power consumption. Fig. 7 shows that cumulative off-chip
accesses for Lulesh are 1.24x higher than for centralized compute.
Out of this increase in off-chip accesses, 23% are due to kernels
providing less than 10% performance speedup, indicating that there
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Figure 9: Speedup observed in different kernels of the Lulesh benchmark.

is a potential for power savings and performance improvements
by dynamically selecting suitable architectures for each kernel in
corresponding runtime systems.

5 RELATEDWORK
This paper evaluates and compares the performance of different
non-uniform processing-in-memory (NUPIM) architectures for fu-
ture exascale nodes enabled by advancements in packaging tech-
nology. To the best of our knowledge, no prior work has studied
such NUPIM architectures for exascale nodes. In the following, we
discuss related work in processing-in-memory (PIM), non-uniform
memory access (NUMA) and heterogeneous memory system archi-
tectures.

The idea of processing-in-memory has been around for long
[25, 27, 30, 32] and has gained renewed importance in recent years
with the emergence of 3D stacked memory technology. Many pre-
vious works have proposed deriving performance improvements
and power savings for memory-intensive applications by using an
accelerator or compute unit integrated with the 3D stack memory
[10, 12, 24]. This paper differs from previous PIMworks in following
ways:

(1) Previous works on PIM suggest offloadingmemory-intensive
parts of computations such that the net off-chip data move-
ment is reduced [15]. With modern packaging technology
allowing in-package high-bandwidth 3D stack memory, of-
floading compute to external in-memory compute units can,
by contrast, result in higher remote accesses. This paper
studies the effects of distributing computations across multi-
ple heterogeneous and non-uniform processing-in-memory
units. Our experiments demonstrate that, due to reduced
contentions in centralized units, there are benefits of dis-
tributing even if it results in higher remote accesses. We
study corresponding factors that determine the performance
impact of distributing compute.

(2) In previous work, the under-utilization of compute resources
resulting from offloading bandwidth-intensive parts of com-
putations to in-memory co-processors is usually not a con-
cern since the cumulative in-memory compute resources are
very small compared to the main processing unit (6̃% in [15])

. However, a node in an exascale system will be connected
to a large memory network [22] and cumulative in-memory
compute resources can range from 10%-40% (1-4 SMs per
stack) of the main processing unit. Considering this, we view
all compute resources integrated with memory as a part of
a multi-unit NUMA system rather than just co-processors.
The work in [9] discusses under-utilization of PIM units, but
chooses to mitigate the problem by executing concurrent ker-
nels in in-memory compute units provided that there is no
dependency among kernels. By contrast, we launch a single

(a) Lulesh: IntegrateStressForElems.

(b) Lulesh: CalcLagrangeElementsPart2.

Figure 10: Lulesh kernels memory access patterns.
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kernel across the node, distributing the threadblocks among
different SMs without any restrictions on dependencies.

Having in-package high-bandwidth memory with compute units
results in a NUMA-like system. Previous works have investigated
how an application (both its threads [16] and data [17, 18, 28])
should be mapped onto a NUMA system. These works assume a
homogeneous system where each unit is identical and compute is
spread across all the units. By contrast, our work aims at finding
suitable architectures (homogeneous, heterogeneous or centralized)
for a given application.

Researchers have previously investigated ways to better exploit
the heterogeneity in memory resulting from multiple memory lev-
els. These works typically assume a centralized compute and pro-
pose how the data should be mapped across different levels of
memory to obtain better performance. There have been propos-
als ranging from using in-package 3D stack memory as another
level of caches [29] to others advancing OS-supported [19] and
OS-transparent [4, 14, 31] page mapping schemes for in-package
memory. Our work instead aims to explore if centralized compute
should be the architecture of choice in the first place, given that
other architectures are now feasible.

6 CONCLUSIONS AND FUTUREWORK
Modern packaging technology hasmade in-package high-bandwidth
3D stack memory a reality. This has opened up opportunities for
non-uniform processing-in-memory (NUPIM) architectures within
exascale nodes.We studymemory behavior of benchmarks and eval-
uate the performance of different architectures. Our experiments
show that:

(1) No single architecture is better across all benchmarks. How-
ever, non-uniform distributed processing-in-memory archi-
tectures perform better in common cases.

(2) Distributed in-memory processingmay provide performance
benefits even in cases where it results in higher off-chip
accesses.

(3) Benefits of non-uniform in-memory processing depend on
various factors. Individual kernels of a single application can
have varying speedup across different configurations, which
can potentially be exploited to reduce power consumption.

We observe that having distributed in-memory compute might pro-
vide higher performance but also results in higher remote accesses
(and power consumption). Furthermore, the engineering cost in-
curred in designing and verifying non-uniform in-memory compute
is significant. In the future, we plan to integrate such overheads in
our cost analysis and investigate ways to mitigate the increase in
power consumption.
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