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Abstract 

Growth of data volumes in application domains such as high-

performance computing, machine learning, and data analyt-

ics places increasing demands on main memory capacity of 

computing systems. Emerging byte-addressable, non-volatile 

memory (NVM) technologies can enable increased main 

memory capacities to meet these application demands more 

cost-effectively than is possible with DRAM alone due to their 

superior cell densities and lower cost-per-bit. However, NVM 

delivers lower memory bandwidth and incurs higher access 

latency than DRAM, especially for writes. As a result, system 

organizations that incorporate NVM typically use it as a 

large, “second-level” memory in addition to a smaller pool 

of DRAM. In this work, we have evaluated and compared the 

performance of different processing near memory systems us-

ing DRAM and NVM. Our simulation results show that, for 

several classes of applications with large datasets that cannot 

fit in DRAM, there can be significant amounts of data move-

ment between DRAM and NVM. Therefore, depending on ap-

plication characteristics, processing near NVM can improve 

energy efficiency and performance over processing near 

DRAM despite the limitations of NVM such as lower band-

width and higher write energy. We show that processing near 

NVM can be up to a few orders of magnitude more energy-

efficient (based on energy-delay product) than processing 

near DRAM when the DRAM capacity can only accommodate 

a fraction of the application’s dataset. 

1. Introduction 

With rapid growth in data volumes, the capacity of the main 

memory should be scaled up to accommodate data-intensive 

applications. Emerging non-volatile memory (NVM) technol-

ogies promise higher density and lower cost-per-bit than vol-

atile DRAM counterparts without incurring leakage energy, 

providing a promising avenue for cost-effectively meeting the 

increased memory capacity requirements of applications. 

However, NVMs typically suffer from lower bandwidth and 

higher access latency (especially for writes) as well as limited 

write endurance. To get the best of both worlds, heterogene-

ous memory systems combine DRAM and byte-addressable 

NVM to balance design requirements of the memory system 

such as bandwidth, capacity, and cost.  

                                                                                              
1 Near-memory compute engines are typically less aggressive in their imple-

mentations than mainstream processors, improving their energy efficiency 
for memory-bound applications. 

At the same time, the end of Dennard scaling and the slow-

down in Moore’s law are necessitating architectural innova-

tions to process big data workloads in an energy-efficient and 

high-performance manner. One such innovation is processing 

near memory (PNM), which can improve performance and 

energy efficiency of data-intensive applications by reducing 

communication between host processor and memory, and lev-

eraging high local memory bandwidth [1, 2]. Maturing die-

stacking technology and tools enable 2.5D and 3D integration 

of logic and memory dies in close proximity to realize PNM.  

Broadly stated, PNM can help two classes of applications. 

The first are applications with large datasets and/or very low 

data locality that do not benefit from the host’s caches. For 

these applications, moving data through the off-chip memory 

interface and the host’s deep cache hierarchy degrades energy 

efficiency without commensurate performance improve-

ments. PNM, instead, eliminates the energy overhead of mov-

ing data by processing data near where it is stored. The second 

class of applications are those with low compute intensity 

(low FLOPs/byte) that do not fully utilize host’s compute ca-

pabilities. Running these applications on the host leads to un-

derutilization of host’s compute resources while memory 

bandwidth is highly stressed. PNM can take advantage of 

higher internal memory bandwidth and more energy-efficient 

internal compute resources1.  

Although PNM sets the stage for high-performance, energy-

efficient data processing for a wide and important group of 

Figure 2. Application examples for processing near memory. 
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data-intensive applications, the benefits and challenges of 

PNM in heterogeneous memory systems composed of DRAM 

and NVM have not been investigated. To enable PNM in such 

a system (Figure 1), near-memory compute engines (CEs) can 

be envisioned near DRAM, near NVM, or even both. The pri-

mary open question is: what applications can achieve further 

performance or energy efficiency improvement by processing 

near NVM over processing near DRAM? As an example, ap-

plication type A in Figure 2 is possibly more amenable to pro-

cessing near DRAM as near-DRAM CEs access and reuse 

data multiple times once data is initially loaded in DRAM. As 

a result, the overhead of data movement between DRAM and 

NVM is amortized over several accesses to high-bandwidth 

DRAM. On the other hand, application types B and C in Fig-

ure 2 are possibly more amenable to processing near NVM. 

The reason is, if processed near DRAM, the amount of data 

movement between DRAM and NVM would be relatively 

close to the amount of data reuse. This paper aims to answer 

this question by examining the tradeoffs between processing 

near DRAM and processing near NVM, and makes the fol-

lowing contributions: 

 We identify and categorize several characteristics that 

make applications amenable to processing near DRAM 

and/or processing near NVM (Section 3). 

 We evaluate and discuss the performance and energy ef-

ficiency of applications under different PNM schemes 

and configurations (Sections 4-6). 

 We demonstrate that several factors related to application 

characteristics (e.g., data reuse and read to write ratio) as 

well as heterogeneous memory configuration (e.g., 

DRAM-NVM bandwidth ratio and DRAM capacity) af-

fect whether or not processing near NVM outperforms 

processing near DRAM.  

We finally highlight the fact that processing near NVM, even 

though potentially challenging, can improve the performance 

and energy efficiency of an important group of applications 

by obviating the need for multiple data movements between 

DRAM and the higher-capacity NVM.  

2. Background 

Processing near NVM presents new benefits and challenges 

compared to processing near DRAM. The differences be-

tween these two types of PNM schemes arise from their im-

portant differences in the way data is partitioned, moved in 

and out of memory devices, and processed near memory. We 

elaborate on their differences in this section.  

For applications with large datasets, data partitioning is highly 

dependent on available memory capacity. NVMs typically ex-

hibit better memory cell density and technology node scala-

bility than DRAM devices and thus can provide higher 

memory capacity in the same area. This denotes that a larger 

portion of the application’s dataset can fit in a single NVM 

device compared with a DRAM device. To process applica-

tions with large datasets near DRAM, their datasets should be 

partitioned into smaller chunks that can fit in DRAM. Pro-

cessing the same application near NVM will require fewer, 

larger partitions or, in some cases, no partitioning at all (if the 

entire application dataset fits in one NVM device). Thus, data 

partitioning is either not required or simpler to implement for 

processing near NVM. This is especially important for irreg-

ular applications (e.g., graph processing), for which achieving 

a data partitioning that considers load balance and communi-

cation overhead is quite challenging [3, 4]. 

Processing application data near DRAM requires different 

steps from processing near NVM since the memory hierar-

chies are different. Figure 3 shows three high-level steps that 

should be performed to process data near DRAM. First, data 

is brought in to DRAM from NVM (step 1). Next, data is pro-

cessed near DRAM (step 2). Finally, results are written back 

from DRAM to NVM (step 3). Steps 1 and 3 involve data 

movement, while step 2 involves actual data processing. 

These three steps may partially be overlapped depending on 

the programming model used and application behavior or may 

be performed in sequence due to inter-dependency, hurting 

application performance. The performance of steps 1 and 3 

could be constrained by the NVM bandwidth and DRAM-

NVM interface bandwidth. Moreover, steps 1 and 3 incur en-

ergy consumption due to intra-chip data movement within 

NVM and DRAM devices, and inter-chip data movement 

over the off-chip DRAM-NVM interface. The data movement 

energy overhead is especially significant for streaming appli-

cations and others that touch each piece of data only once 

prior to replacing it with a new one in DRAM. On the other 

hand, processing near NVM eliminates steps 1 and 3 entirely 

as data is processed in-situ. 

The actual data processing (step 2) can be performed faster 

and more energy-efficiently near DRAM due to its higher in-

ternal bandwidth and lower access energy. This benefit of 

near-DRAM processing is more notable for applications in 

which data is reused multiple times in short distances from the 

first access. Short reuse distance in applications provides the 

opportunity to initially load DRAM with a chunk of data, pro-

cess it locally without frequently moving data between 

DRAM and NVM, and then switch to another chunk of data. 

This way the data movement overhead (steps 1 and 3) is amor-

tized over large amounts of processing near DRAM. For ap-

plications with short reuse distances, since NVM has usually 

lower memory bandwidth than DRAM, the percentage of 

memory bandwidth utilization increases in processing near 

NVM. Hence, some applications that are compute-bound in 

Figure 3. High-level steps of processing near DRAM. 
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near-DRAM processing may become memory-bandwidth-

bound when processed near NVM, provided the same com-

pute engines are used. 

However, if an application exhibits high data reuse but with 

long reuse distances, processing near NVM would potentially 

deliver better performance as data could be displaced from 

DRAM prior to reuse. 

DRAM and NVM have different memory attributes. NVMs 

typically have lower write bandwidth, higher write latency, 

and present endurance challenges, while DRAM has symmet-

rical read and write latency/bandwidth and virtually infinite 

write endurance. Although the write bandwidth itself is typi-

cally not critical to overall performance, writes can occupy 

memory and decrease the available read bandwidth. Thus, 

writes that cannot be filtered by the cache hierarchy may 

cause performance degradations and endurance challenges. 

There have been several hardware optimizations to decrease 

the number of writes to NVM cells [5, 6, 7, 8, 9, 10] and soft-

ware techniques to lower write bandwidth requirements of ap-

plications [11]. However, writes should be still considered in 

designs for processing near NVM. 

3. Application Characterization  

In this section, we study a wide range of applications with 

different characteristics. Our goal is to evaluate the amenabil-

ity of these applications to near-DRAM processing and near-

NVM processing based on their memory characteristics. The 

evaluated applications are listed in Table 1. To do this study, 

we generate and use memory traces of application kernels. 

More details about the traces can be found in Section 5.  

To study application characteristics, we define and measure 

three metrics: read-to-write ratio, data reuse, and data reuse 

distance. These metrics can be used to categorize whether an 

application is more suitable for processing near DRAM or 

NVM. Note that for some applications, we have reduced the 

number of kernel iterations to limit the size of memory traces 

so we can use them for simulation in a reasonable time. There-

fore, some measurements could slightly change with a higher 

iteration count. 

Read-to-Write Ratio: Since NVMs usually have higher read 

bandwidth than write bandwidth, intuitively, applications 

with higher read-to-write (R2W) ratios are more suitable for 

near-NVM processing. Therefore, one should consider the 

R2W ratio of applications when evaluating them for near-

NVM processing. We define the average R2W ratio as 
# 𝑜𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑟𝑒𝑎𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

# 𝑜𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑤𝑟𝑖𝑡𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
. Figure 4 shows the average R2W ra-

tio across our evaluated applications. Some of the applications 

show very high R2W ratios, up to about 150. For applications 

with high R2W ratios, the read bandwidth is the dominant fac-

tor in performance. Therefore, such applications are poten-

tially good candidates for near-NVM processing. 

Data Reuse: We use data reuse (along with the reuse dis-

tance) to characterize how efficiently the application dataset 

can be cached in DRAM. We use the average number of data 

accesses per cacheline to measure data reuse as shown in Fig-

ure 5. Some applications such as BP, HST, NW, and RD have 

a small number of accesses or even no data reuse (one access 

per cacheline), while some applications such as BT and CL 

have a very large number of accesses per cacheline. Applica-

tions showing significant data reuse are more suitable for 

near-DRAM processing when the capacity of DRAM is large 

enough to capture their working sets. However, when the 

working set size exceeds DRAM capacity, even data with a 

lot of reuse may need to be fetched multiple times from NVM 

depending on DRAM capacity and data reuse distance, which 

may impact the performance significantly.  

Data Reuse Distance: We use data reuse distance to show 

how well the application dataset fits into DRAM when the 

DRAM capacity is limited. Reuse distance is a relatively ac-

curate metric to predict the effectiveness of data caching [12]. 

Since data movement between DRAM and NVM is per-

formed at page granularity (4KB), we measure the reuse dis-

tance at page granularity. Data reuse distance is defined as the 
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Figure 4. The average read-to-write ratio. 

 

Figure 5. Average number of accesses per cacheline. 
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Figure 6. Reuse distance relative to the data set size. 
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number of distinct pages referenced in between two consecu-

tive references to the same page. The reuse distance of a page 

denotes how much DRAM capacity is needed to hold the page 

in DRAM until the next reference to it. Therefore, applica-

tions with high data reuse and large reuse distances may suffer 

significantly from processing near DRAM when the DRAM 

capacity is limited as the same data elements have to be 

fetched repeatedly. On the other hand, applications with high 

data reuse, but small reuse distances can benefit significantly 

from processing near DRAM.  

Figure 6 shows the reuse distances of consecutive references 

to the same page in terms of the number of distinct pages ref-

erenced in between (back-to-back references to the same page 

are excluded). The reuse distance is represented as the relative 

size of the application dataset. For example, for an application 

whose dataset includes 1000 pages, page references with a re-

use distance of 25-50% have 250-499 distinct pages refer-

enced in between those references. Applications with small 

reuse distance such as CL can be effectively cached in DRAM 

with a small capacity. Applications with large reuse distance 

such as FW and NW can severely suffer from a small DRAM 

capacity. Note that even when there is a single request whose 

distance is larger than the DRAM capacity, the DRAM needs 

to evict and fetch a whole page. Therefore, a relatively small 

number of such requests can severely impact performance. 

4. PNM Schemes 

The system that we evaluated consists of a host processor, a 

DRAM stack and an NVM stack. A memory stack is a 3D or-

ganization of memory dies and a single logic die. The near-

memory CEs are implemented in the logic die. We assume 

CEs are GPUs as their user-programmability and high thread-

level parallelism (and thus high bandwidth utilization) make 

them a good match for processing a wide variety of highly 

parallel and memory-intensive applications that are amenable 

to PNM [13]. The insights provided to us from this work is 

also valid for other types of throughput-oriented CEs such as 

field-programmable gate arrays (FPGAs) and custom acceler-

ators as our analysis is not based on the detailed architecture 

of the underlying CEs. 

Figure 7 shows abstract diagrams of three different schemes 

for PNM that we investigate in following sections. Note that 

we do not include comparisons against processing by the host 

as the memory-intensive applications that would typically be 

executed using PNM do not benefit from the host’s cache hi-

erarchy and greater compute power. Also, we defer schemes 

in which both DRAM and NVM have concurrent PNM capa-

bilities to future work as the performance of such schemes de-

pend highly on data partitioning and synchronization between 

the two and poses programming challenges. Further, we focus 

this work on schemes with a single DRAM stack and a single 

NVM stack. Inter-node communication in systems with mul-

tiple stacks each of DRAM and NVM is an important topic 

but is also deferred to future research. 

4.1 Idealistic Processing Near DRAM 

In this scheme, DRAM constitutes the main memory address 

space and uses in-stack CEs for PNM, as shown in Figure 7a. 

This organization resembles the conceptual near-DRAM pro-

cessing systems, but we (unrealistically) assume that the ca-

pacity of a single DRAM stack is large enough to hold the 

entire application’s dataset and the entire dataset is loaded into 

the DRAM prior to application execution. Thus, this shows an 

idealistic scheme for processing near DRAM which provides 

an upper bound on performance. 

4.2 Processing Near DRAM 

In this scheme, shown in Figure 7b, DRAM as the high-band-

width memory is used for PNM, while NVM as the high-ca-

pacity memory is used only for storing application’s dataset. 

This scheme resembles near-DRAM processing systems 

where DRAM is used as working memory backed up by 

NVM. In this scheme, only CEs integrated with the DRAM 

stack are used for data processing. Input data needed by near-

DRAM CEs is first brought into DRAM from NVM before it 

can be processed. But, dynamic memory buffers are allocated 

in DRAM directly, and data are brought in from NVM only 

when it requires the data from NVM to initialize the buffer.  

Data movement between DRAM and NVM is orchestrated at 

4KB page granularity as finer grain data management incurs 

high metadata storage and management overhead [14]. To es-

chew the high write latency, write energy, and endurance 

challenges in NVM, we do not swap pages between DRAM 

and NVM. Instead, DRAM is software-managed and we copy 

pages from NVM to DRAM upon request. Only dirty data 

(not necessarily the whole page) is written back to NVM upon 

page eviction.  This policy not only improves the performance 

of applications that cause frequent evictions of clean pages 

from DRAM, but also reduces writes to NVM. We model the 

overhead of data movement between the two. 
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Figure 7. Evaluated PNM schemes: Idealistic processing near DRAM (a), processing near DRAM (b), processing near NVM (c). 
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4.3 Processing Near NVM 

This scheme, as shown in Figure 7c, uses near-NVM CEs to 

enable processing near NVM. In this scheme, we assume that 

the capacity of NVM is large enough to hold the entire appli-

cation’s dataset. The CEs in the DRAM stack are not used in 

this scheme. 

5. Experimental Methodology 

Application Workloads: We used benchmarks from Rodinia 

[15], Pannotia [16], OpenDwarf [17], AMD Application SDK 

[18] and Mantevo [19] suites. Table 1 lists all the benchmarks 

we evaluated. 

System Configuration and Memory Traces: In our system 

shown in Figure 7, the host CPU processor and GPU (CEs) 

share physical memory. We have generated memory traces us-

ing an in-house version of the gem5-gpu simulator [20] to in-

vestigate applications’ memory characteristics. The control-

intensive portion of the applications are run on the CPU and 

data-parallel kernels are run on the GPU. In the traces, we 

only capture the memory requests of the kernels running on 

the GPU as we assume only the kernels would be processed 

near memory. The near-memory GPU has 16 compute units 

(CUs), with each CU having a 64-wide SIMD pipeline, to re-

semble CEs integrated in the logic layer of a 3D-stacked 

memory considering thermal and area constraints shown by 

prior work [21, 13]. The near-memory GPU and its cache hi-

erarchy are modeled after AMD’s Graphics Core Next archi-

tecture [22]. Each CU has a 16KB private L1. We assume that 

near-memory CEs do not have L2 caches as they are unlikely 

to benefit memory-intensive applications suitable for PNM. 

Thus, memory traces are captured after L1 caches and re-

quests serviced by the L1 caches are not included in the traces. 

There are a few applications in Table 1 that are traditionally 

considered as memory-bandwidth-intensive but require rela-

tively low bandwidth in our configuration. These applications 

are CL, HST, HS, MM, and RD. CL has two major kernels, 

one memory-intensive and one non-memory-intensive. The 

average bandwidth appears relatively low. HS and MM use 

scratchpad memory in the CUs to capture input data reuse 

which lowers their required main memory bandwidth. HST 

and RD also use scratchpad memory to store and reduce in-

termediate results. They also use memory barriers which fur-

ther lower the frequency of memory accesses. Therefore, 

these applications are not memory-bandwidth-intensive in 

this configuration. 

Simulation Infrastructure: To evaluate the performance of 

our PNM schemes, we use the trace-driven memory simulator 

Ramulator [23]. We have added our NVM model to it and 

have enhanced it by using timestamps in the memory traces.  

DRAM and NVM Models: In our models, both DRAM and 

NVM architecture and interface are modeled after High Band-

width Memory (HBM) [24]. Both DRAM and NVM use a 

1024-bit data bus interface at 1Gbps, have 8 channels and 8 

banks. DRAM uses a 2KB row buffer. We use phase-change 

memory (PCM) technology as a representative of NVM. We 

assume that NVM is byte-addressable and has a 256-byte row 

buffer [25, 26, 27]. We have adopted the NVM timing param-

eters from Xu et al. [25]. 

We run synthetic tests to measure the sequential and random 

bandwidths of read and write accesses for our DRAM and 

NVM models. Sequential accesses are used to determine the 

bandwidth under maximum row buffer hit rate, while random 

accesses are used to determine the bandwidth under virtually 

no row buffer hits. In our experiments, memory request ad-

dresses are sliced in the order of Row, Bank, Column, and 

Channel, from MSB to LSB to increase channel-level paral-

lelism and row buffer hit rate. Since data is cacheline-inter-

leaved among channels, sequential accesses utilize all chan-

nels, reaching near theoretical peak bandwidth. Figure 8 com-

pares DRAM and NVM bandwidths for sequential accesses 

and random accesses. The sequential read and write band-

width of DRAM is 113.08GB/s and 112.18GB/s, respectively. 

Our NVM model has almost the same sequential read band-

width as DRAM as most requests hit in row buffers and NVM 

has the same column access latency (tCL) as DRAM. How-

ever, NVM has much lower write bandwidth and random ac-

cess bandwidth due to higher row activation delay (tRCD) and 

write recovery time (tWR). 

The footprints of our applications can be very large in real 

deployments. To refrain from long simulation times, we use 

smaller datasets (e.g., 100MB) and configure DRAM capacity 

Figure 8. DRAM and NVM bandwidths. 
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Table 1. List of benchmarks studied.   

Benchmark Suite Acronym 

Back propagation Rodinia BP 

Breadth-first search Rodinia BFS 

Bitonic sort AMD SDK BT 

Graph coloring Pannotia  CL 

Codesign molecular dynamics Mantevo  MD 

Discrete cosine transform AMD SDK DCT 

Floyd-Warshall shortest path Pannotia  FW 

Histogram AMD SDK HST 

Hotspot Rodinia HS 

K-means clustering Rodinia KM 

Matrix Multiplication AMD SDK MM 

Mini finite element Mantevo FE 

Maximal independent set Pannotia  MIS 

Nearest Neighbor Rodinia NN 

Needleman-Wunsch Rodinia NW 

Reduction  AMD SDK RD 

Sparse Matrix-Vector Multiplication OpenDwarf  SPMV 
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according to the memory footprint of each application in our 

simulation. We assume the capacity of NVM is large enough 

to hold the entire dataset. The purpose of configuring DRAM 

capacity is to model the cases when DRAM does not provide 

enough capacity while NVM does, which is the scope of this 

work. Considering the likely large capacity gap between 

DRAM and NVM in realistic systems with both memory 

types, such an assumption is reasonable. 

Energy: We estimate energy consumption of memory stacks 

and interfaces using a high-level energy model. We assume 

that DRAM core access and wire traversal within the DRAM 

die are 4pJ/b [28] and 0.8pJ/b [29], respectively. DRAM back-

ground and refresh power is estimated at 10% of the maxi-

mum active power of the DRAM dies [30]. We assume NVM 

read energy is 11.82pJ/b and NVM write energy is 369.02 pJ/b 

[31]. We assume the data transfer over TSV consumes 0.4pJ/b 

on average for an 8-high die-stack [32]. We use serial inter-

faces for off-chip communication between DRAM and NVM. 

We assume that off-chip interface and its logic consume 

4.5pJ/b [33, 34]. We also assume interface power consump-

tion is constant regardless of utilization as idle symbols need 

to be transmitted [35, 36].  

6. Results 

6.1 Performance 

We evaluate the performance of the three schemes described 

in Section 4 to find out what applications benefit from near-

NVM processing. Figure 9 compares the execution time of the 

three schemes normalized to that of the idealistic processing 

near DRAM scheme. For the processing near DRAM scheme, 

we use DRAM with different capacities to show the impact of 

DRAM capacity on the performance: we evaluate DRAM ca-

pacity of 100%, 50%, 25% and 12.5% of each application’s 

dataset. When the DRAM capacity is 100% of the applica-

tion’s dataset, the applications incur only cold misses for ini-

tial fetch of input data from NVM. All subsequent accesses to 

the data are retrieved from DRAM. As we mentioned in Sec-

tion 4, NVM contains the entire application’s dataset.  

Figure 9 shows that processing near-NVM provides promis-

ing performance for a large number of applications. The pro-

cessing near NVM scheme can even achieve the same perfor-

mance as the idealistic processing near DRAM scheme for 

some applications (CL, MD, DCT, HST, MM, FE, and RD). 

We can explain this using three characteristics of the applica-

tions: R2W ratio, bandwidth requirement, and access pattern. 

First, these six applications, except DCT, have a R2W ratio 

greater than 5, which mitigates the negative impact of the 

NVM’s low write bandwidth. Second, these six applications, 

except CL and RD, require a relatively low memory band-

width, which means that the bandwidth provided by NVM can 

exceed their bandwidth requirements. Finally, these applica-

tions have regular access patterns which leads to relatively 

high row buffer hit rate, especially CL and RD. Having a high 

hit rate allows applications to take advantage of NVM’s lim-

ited bandwidth more efficiently. This is especially important 

for CL and RD as their required bandwidth approaches the 

NVM’s maximum.   

Comparing the processing near NVM scheme with the pro-

cessing near DRAM scheme, the former still can outperform 

the latter for many applications. Even when the DRAM ca-

pacity is large enough for the whole application’s dataset 

(DRAM capacity is 100% of application dataset), processing 

near NVM for BP and NN outperforms the processing near 

DRAM scheme by 5% and 39%, respectively. The reason is 

that, although these two applications have relatively low R2W 

(less than or equal to 2.0), they have little or no data reuse. 

Therefore, the performance overhead of fetching data from 

NVM is not amortized over multiple accesses in DRAM, de-

grading the performance of processing near DRAM.  

However, deploying DRAM with the same capacity as NVM 

is highly unlikely due to cost. When compared with limited-

capacity DRAM, more applications benefit from the pro-

cessing near NVM scheme. When the DRAM capacity be-

comes as small as 12.5% of the application dataset, most ap-

plications perform better using the processing near NVM 

scheme. This highlights the fact that data movement between 

DRAM and NVM can significantly degrade performance of 

the processing near DRAM scheme when DRAM capacity is 

limited. However, for HS, NW, and SPMV, near-DRAM pro-

cessing still outperforms near-NVM processing even using 

DRAM with limited capacity. HS involves a considerable 

number of writes at the end of its execution which cannot be 

effectively overlapped with other operations, making pro-

cessing near NVM slower than processing near DRAM. NW 

has extremely low R2W ratio (0.53). Hence, it severely suf-

fers from the NVM’s low write bandwidth. SPMV is a highly 

Figure 9. Execution time normalized to the idealistic processing near DRAM scheme. 
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memory-intensive application with relatively high data reuse 

in short distances, making it a good fit for near-DRAM pro-

cessing. The data reuse in SPMV is mostly caused by L1 

cache thrashing. We expect that an optimized implementation 

of SPMV with reduced cache thrashing could improve its per-

formance for near-NVM processing. 

Insights: We can roughly group the applications into two cat-

egories according to their performance degradation with the 

decrease in the DRAM capacity: (1) applications such as BP 

and SPMV whose performance does not degrade or degrades 

slightly, and (2) applications such as BFS and FW whose per-

formance degrades sharply. Such different behaviors are 

mainly caused by applications’ differences in data reuse dis-

tance. When the data reuse distance is smaller than the DRAM 

capacity, the referenced data can be effectively cached in 

DRAM. However, when the reuse distance is larger than the 

DRAM capacity, the referenced data is evicted from DRAM 

before its subsequent use and must be fetched from NVM 

again. In addition, when DRAM capacity is limited, for appli-

cations such as BP, BFS and NN a large amount of dirty data 

is evicted to NVM, which degrades the performance signifi-

cantly. 

6.2 Energy and Energy Efficiency 

We evaluate the energy consumption of memory stacks, 

memory interface, and DRAM-NVM interconnect for differ-

ent PNM schemes. Figure 10 shows the energy consumption 

of the schemes normalized to that of the idealistic processing 

near DRAM scheme. Since processing near NVM does not 

entail consuming refresh energy and DRAM-NVM intercon-

nect static energy, it has a significant advantage in terms of 

energy for compute-intensive applications with high R2W ra-

tio such as FE, MM, HST, and RD. For other applications, the 

processing near NVM scheme generally consumes more en-

ergy than the processing near DRAM scheme when the 

DRAM capacity is large enough to capture most of applica-

tion’s dataset as NVM has higher access energy per bit, espe-

cially writes. However, when the DRAM capacity becomes 

smaller, the energy advantage of near-DRAM processing di-

minishes quickly as more data movement happens between 

DRAM and NVM. When the DRAM capacity is 12.5% of ap-

plication’s dataset, a considerable number of applications 

consume lower energy for processing near-NVM. The excep-

tions are BP, CL, DCT, HS, NN, and SPMV in which the pro-

cessing near NVM scheme consumes slightly more energy 

than the processing near DRAM scheme with 12.5% capacity. 

This is mainly because these six applications have relatively 

low R2W ratio. 

We further use the energy-delay product as a metric for energy 

efficiency. Compared with processing near DRAM with 

12.5% capacity, processing near NVM provides better energy 

efficiency for all applications, except DCT, HS, and SPMV. 

The energy efficiency of FE on processing near NVM is even 

better than that on idealistic processing near DRAM. The rea-

son is that our implementation of FE is greatly compute-in-

tensive. Thus, background energy of DRAM is the dominant 

portion of memory energy. Although NVM has higher access 

energy than DRAM, the background energy spent on DRAM 

makes the total energy of DRAM higher. 

Insights: The energy and energy efficiency results show that 

when the dataset of the application is larger than the DRAM 

capacity, additional DRAM and NVM accesses and data 

movement between the two offset the access energy and band-

width advantage of DRAM over NVM. In such cases, pro-

cessing near NVM can avoid those additional memory ac-

cesses and improve the energy efficiency of the system. 

7. Conclusions  

Many workloads with large datasets such as in-memory data-

bases, data analytics, and scientific computing can be pro-

cessed more efficiently near NVM than DRAM given the en-

tire dataset can fit into one level of memory, enabling signifi-

cant energy saving by obviating the need to move data be-

tween different levels of memory hierarchy. In this work, we 

compare the performance of processing near lower-capacity 

DRAM with that of processing near higher-capacity NVM for 

a wide range of applications. In terms of performance, the fol-

lowing classes of computations are amenable to processing 

near NVM: 

 Computations that access data only once or few times 

such as those that perform pre-processing or post-pro-

cessing (e.g., histogram and reduction). 

 Computations with data reuse but a reuse distance larger 

than the DRAM capacity such as those that touch large 

datasets iteratively. 

 Computations with large datasets that are difficult to par-

tition into smaller chunks due to their irregular access 

patterns (e.g., graph processing). 

Figure 10. Energy consumption normalized to the idealistic processing near DRAM scheme. 
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 Computations with high read-to-write ratios or whose 

writes can be effectively overlapped with other opera-

tions. 

In terms of energy, computations with high read-to-write ra-

tios that cannot be effectively cached in DRAM are amenable 

to processing near NVM due to eliminating DRAM refresh 

energy and DRAM-NVM interface energy. 
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