
Evaluating a Trade-Off between DRAM and Persistent Memory
for Persistent-Data Placement on Hybrid Main Memory
Satoshi Imamura

Fujitsu Laboratories Ltd.
Kanagawa, Japan

s-imamura@jp.fujitsu.com

Mitsuru Sato
Fujitsu Laboratories Ltd.

Kanagawa, Japan
msato@jp.fujitsu.com

Eiji Yoshida
Fujitsu Laboratories Ltd.

Kanagawa, Japan
yoshida.eiji-01@jp.fujitsu.com

ABSTRACT
Persistent memory will be widely used as main memory in future
computer systems because it is byte addressable, its cost is lower
than that of DRAM, and its access speed is much higher than that
of secondary storages. However, since the access speed (especially
write speed) and write endurance are lower than those of DRAM, it
will be combined with DRAM to constitute main memory. This is
well-known as hybrid main memory system, and various techniques
to optimize data placement on this system have been proposed. The
fundamental concept of them is to place frequently written data on
DRAM in order to hide the disadvantage of persistent memory.

In this paper, we focus on applications which guarantee data
persistence with logging mechanisms and suggest a new trade-off
between DRAM and persistent memory on platforms that apply
hybrid main memory with secondary storages. If data is placed
on volatile DRAM, it can be accessed faster but logging incurs a
non-trivial overhead. On the other hand, if the data is placed on
non-volatile persistent memory, it suffers from the slower accesses
while it can avoid the logging overhead. We quantitatively evaluate
this trade-off using an in-memory database as a case study on a
persistent memory emulation platform. The results reveal that it
is better for performance to place frequently written data on per-
sistent memory rather than DRAM. Compared to placing the data
of a workload including 50% reads and 50% writes on DRAM with
logging enabled, we can achieve 38% and 25% higher throughput
of the database by placing the data on PM whose latency is double
and four times of the DRAM latency, respectively.

CCS CONCEPTS
• Information systems → Data layout; • Hardware → Mem-
ory and dense storage;

KEYWORDS
Hybrid main memory systems, DRAM, persistent memory, data
placement, logging mechanisms

ACM Reference Format:
Satoshi Imamura, Mitsuru Sato, and Eiji Yoshida. 2017. Evaluating a Trade-
Off between DRAM and Persistent Memory for Persistent-Data Placement
on Hybrid Main Memory. In Proceedings of Workshop on Hardware/Software
Techniques for Minimizing Data Movement, Portland, Oregon, USA, September
2017 (Min-Move ’17), 6 pages.

1 INTRODUCTION
Emerging persistent memory (PM) is currently attracting a lot of
attention both in industry and academia, because it has excellent
properties in terms of performance and cost. It provides five times

Processor

Persistent

memory
DRAM

Storage

Data Data

Log
Volatile

Non-volatile

Figure 1: Data placement on a platform including hybrid
main memory and a storage for an application which guar-
antees data persistent with logging.

the capacity at the same cost as DRAM [5] and three orders of mag-
nitude lower the read latency as storages [22]. More importantly,
PM is byte addressable and non-volatile, which means that data
stored on PM is not lost across system power failures. Real PM prod-
ucts will be available in near future because Intel has announced
that 3D XPoint-based PM will be released in 2018 [7].

However, the access speed (especially write speed) and write
endurance of PM are lower than those of DRAM. If data stored
on PM is frequently written, it suffers from the long access times
and the cells may be worn out in a short time. In order to cover
these disadvantages of PM, hybrid main memory including DRAM
and PM will be commonly applied to future computer systems. As
PM can be accessed with common loads and stores via the same
interface to DRAM, it can be combined with DRAM to constitute
a single physical address space of main memory. For optimization
of data placement between DRAM and PM on hybrid main mem-
ory, several hardware- and software-based techniques have been
proposed [11, 12, 14, 19]. The fundamental concept of them is to
reduce the number of writes to PM by placing frequently written
data on DRAM. However, their viewpoints are only the differences
of the write speed and endurance between DRAM and PM.

In this paper, we target applications which guarantee data persis-
tence, such as in-memory databases, and focus on the difference of
volatility between DRAM and PM. Such applications traditionally
apply logging mechanisms to record the information about each
data update in a log file on non-volatile storages. If data on volatile
DRAM is lost due to system failures, the log is used to recover the
data. In contrast, logging is not necessary if the data is persisted
on non-volatile PM. As logging incurs a non-trivial performance
overhead [13], a new trade-off between DRAM and PM must be
taken into account to maximize the performance of such applica-
tions on platforms that apply hybrid main memory with storages,



Min-Move ’17, September 2017, Portland, Oregon, USA Satoshi Imamura, Mitsuru Sato, and Eiji Yoshida

as illustrated in Figure 1. If data is placed on DRAM, it can be ac-
cessed faster but the logging overhead occurs to guarantee data
persistence. On the other hand, if the data is place on PM, it suffers
from the slower accesses while it can avoid the logging overhead.

We choose an open-source in-memory database, Tarantool [21],
as a case study and quantitatively evaluate the trade-off using a
platform provided by Intel that can emulate the latency and band-
width of PM. The logging overhead occurred by placing data on
DRAM is evaluated by running Tarantool on DRAM with logging
enabled and disabled. The overhead of slower accesses occurred
by placing data on PM is evaluated by running Tarantool on the
emulated PM without logging. In order to guarantee data persis-
tence and transaction atomicity on PM, we modify the source code
of Tarantool using the libpmemobj library of NVM Library [18].

Our evaluation shows that the logging overhead becomes larger
than the overhead of slower accesses to PM, when data is frequency
written. This result means that it is better for performance to place
frequently written data on PM rather than DRAM. For example,
compared to placing the data of a workload including 50% reads and
50% writes on DRAMwith logging enabled, we can achieve 38% and
25% higher throughput of Tarantool by placing data on PM whose
latency is double and four times of the DRAM latency, respectively.
This is an opposite finding to the concept used in existing data
placement techniques for hybrid main memory. Therefore, we need
to rethink the data placement if our objective is to maximize the
performance of applications which guarantee data persistent.

This paper is organized as follows. Section 2 introduces prior
work related to this work and discusses the difference between
them. Section 3 explains the architecture of our target computer
system and our experimental platform for PM emulation. Section 4
describes an in-memory database as a case study of applications
which guarantee data persistent and suggests the new trade-off on
hybrid main memory. Section 5 provides the methodology and re-
sults of our evaluation. Finally, we conclude this work in Section 6.

2 RELATEDWORK
In order to cover the disadvantages of PM, applications have been
optimized at an algorithm- and data structure-level. Chen et al. de-
signed two PM-friendly database algorithms: B+-tree index and
hash joins [2]. They re-organized the data structures to reduce the
number of writes at the expense of an increase in reads, thereby
achieving higher overall performance and endurance. Bailey et al. pre-
sented a persistent key-value storage system designed to leverage
the advantages of PM [1]. Their system relies on byte-addressability
of PM to support both fine- and large-grained data managements
and employs a two-level hierarchical design. It can offset the perfor-
mance and endurance weakness of PM by managing thread-local
data on DRAM,

Oukid et al. implemented a database that efficiently works on
hybrid main memory without storages [16, 17]. As it directly up-
dates primary data on PM, there is no need to copy data from
storages. More importantly, by leveraging non-volatile PM, the
logging mechanism of the database can be dropped and data on
PM can be instantly recovered after system failures. Index data
structures can be placed on either DRAM or PM to trade-off the
overall throughput and data recovery times. Compared to their

work, we assume platforms that apply hybrid main memory with
storages (as illustrated in Figure 1), because the capacity of PM is
still much smaller than that of storages. As primary data can be
also placed on either DRAM or PM on such systems, the trade-off
described in Section 1 must be taken into account to maximize the
performance of applications.

A traditional logging mechanism of databases, calledwrite-ahead
logging (or physical logging), records the information about each
data update including before and after images to non-volatile stor-
ages [15]. This logging mechanism represents a non-trivial fraction
of the overall transaction execution time; therefore, it is a big chal-
lenge to reduce this overhead for improving the throughput of
databases. Malviya et al. proposed a light-weight, coarse-grained
logging technique called command logging, which only records the
executed transactions instead of each data update [13]. Command
logging can significantly reduce the logging overhead compared to
physical logging, but recovery times after failures become longer
because transactions need to be re-executed completely. In contrast,
we aim to eliminate the overhead of write-ahead logging by placing
data on non-volatile PM while keeping short recovery times. On
the other hand, PM has been used to store logs for a reduction in
the logging overhead [6, 8]. This approach can avoid writing logs
to slow storages and eliminate the impact of storage I/O time on
performance. Placing data itself on non-volatile PM, as considered
in this paper, is an orthogonal approach to the PM-based logging
because it aims to completely eliminate the process of logging. Its
advantage is to save the capacity of PM for log entries.

In order to efficiently exploit the potential of hybrid main mem-
ory, several techniques to optimize data placement between DRAM
and PM have been proposed. As mentioned in Section 1, the fun-
damental concept of them is to place frequently written data on
DRAM to avoid frequent writes to PM. Mogul et al. showed that
operating systems can know the write frequency of pages, and
the such information is useful to appropriately manage pages [14].
Ramos et al. implemented a memory controller to monitor access
patterns, migrate pages between DRAM and PM, and translate
the memory requests from cores [19]. Li et al. analyzed the work-
load characteristics of several large-scale scientific applications
and showed that rigorously managing write accesses is essential
to improve the performance and reduce the power consumption
[12]. Lee et al. proposed an operating system-level page manage-
ment algorithm that uses the write frequency of each page as well
as the recency of write references to accurately estimate future
write references [11]. Dulloor et al. showed that memory access
patterns such as sequential, random, and pointer chasing are im-
portant to decide data placement and designed a set of libraries
and automatic tools that enables programmers to achieve optimal
data placement [5]. Compared to the above prior work, this paper
reveals that it is better for performance to place frequently written
data on PM rather than DRAM for applications which guarantee
data persistence.

3 ARCHITECTURE OF TARGET SYSTEM
This section describes persistent memory, the architecture of our
target computer systems, and our experimental platform to emulate
persistent memory.



Evaluating a Trade-off between DRAM and Persistent Memory... Min-Move ’17, September 2017, Portland, Oregon, USA

Table 1: Comparison of Memory Technologies [2, 22].

DRAM PM (PCM) Flash HDD

Cell size (F 2) 6-12 4-16 1-4 N/A
Read latency 20-50 ns 48-70 ns < 25 us < 5 ms
Write latency 20-50 ns < 1 us < 500 us < 5 ms
Write BW (MB/s) 1000 50-100 5-40 < 200
Endurance > 1016 109 104 > 1016
Byte addressable Yes Yes No No
Non-volatile No Yes Yes Yes

3.1 Persistent Memory
PM is byte-addressable and non-volatile memory, which can be
accessed with common loads and stores via the same interface to
conventional DRAM [3]. It is implemented as dual inline memory
modules (DIMMs) and attached to a memory bus side-by-side with
DRAM. Although several technologies such as spin-torque trans-
fer magnetoresistive RAM (STT-MRAM) and ferroelectric RAM
(FeRAM) have been considered as candidates for PM, phase-change
memory (PCM) is known as one of the most promising technologies
[10]. In this paper, we assume PM implemented based on PCM.

Table 1 compares the characteristic of PCM-based PMwith those
of DRAM, Flash solid state drives (SSDs), and hard disk drives
(HDDs). The cell size of PM is comparable to that of DRAM but
larger than that of Flash SSDs. Thus, it is still not practical to com-
pletely substitute PM for Flash SSDs. The read latency of PM is
three and five orders of magnitude lower than those of Flash SSDs
and HDDs, and PM exposes over two times higher endurance than
Flash SSD. Therefore, PM is expected to be used as main memory.
However, compared to DRAM, the disadvantages of PM are the
slower access speed and lower write endurance. Although the dif-
ference of read latency is not large, the write latency and bandwidth
is much worse. It is a big challenge to hide these disadvantages if
PM is used as main memory.

3.2 Hybrid Main Memory with Storages
With the characteristic of PM explained in the previous section, PM
will be combined with DRAM to constitute main memory in future
computer systems, which is called hybrid main memory. DRAM can
be leveraged to compensate the lower write speed and endurance of
PM. In addition, we assume that secondary storages are attached to
hybrid main memory, as illustrated in Figure 1, because the capacity
of PM is still much smaller than that of storages. On such systems,
we need to appropriately place data either on DRAM or PM in order
to fully exploit the potential of hybrid main memory.

3.3 Emulation Platform
Since PM is not yet commonly available, Intel provided a platform
to emulate PM [9]. Table 2 summarizes the specification of our
experimental platform. The emulation of PM is based on the support
of a Linux kernel and two separate DRAM regions (64 GB region on
channels 0-1 and 384 GB region on channels 2-3 of this platform).
The latter region is reserved by modifying kernel command line
parameters (like “memmap=nn!ss”), and it appears as a PM region
to Linux. The accesses to the emulated PM region is provided by

Table 2: Specification of our platform for persistentmemory
emulation.

CPU Intel Xeon E5-4620 v2, 2.6 GHz, 8 cores

Memory 64 GB DDR3 (channels 0-1)
DRAM latency: 85 ns, DRAM bandwidth: 38 GB/s

384 GB DDR3 (channels 2-3) for PM emulation
PM latency: 170 ns (2x), 340 ns (4x), 680 ns (8x)
PM bandwidth: 9.5 GB/s (1/4)

HDD 1 TB SATA

OS Linux kernel 4.7.0-3.el6.FTS

a kernel module, which exposes the region as a block device. This
block device is formatted with an ext4 file system and mounted
with the direct access (DAX) extensions enabled. The DAX support
of ext4 allows direct load/store accesses at byte granularity to the
contents of the files in this file system. As the PM region is exposed
by Linux as memory-mapped files, applications can create memory
pools from the files.

Moreover, this platform has special machine specific registers
(MSRs) to configure the latency and bandwidth of PM. Based on
the register values, this platform injects additional stall cycles into
all memory accesses and limits the memory bandwidth. We change
the latency to 170 ns, 340 ns, and 680 ns, which correspond to
2x, 4x, and 8x of the DRAM latency, respectively. In addition, we
set the PM bandwidth to a quarter of the DRAM bandwidth (this
setting is only available on our platform). Note that these settings
affect both reads and writes to the PM region. These are pessimistic
settings because the actual read latency of PM is lower than the
write latency.

4 CASE STUDY: IN-MEMORY DATABASE
In this work, we choose an in-memory database, Tarantool [21], as
a case study of applications which guarantee data persistence with
logging. This section presents the overview of this database and a
new trade-off on hybrid main memory.

4.1 Tarantool
Tarantool is an open-source NoSQL in-memory database manage-
ment system. It processes transactions on a single thread, thereby
guaranteeing consistency and isolation. Moreover, all data is main-
tained in main memory, and atomicity and durability (or data persis-
tence) are ensured by a common write-ahead log (WAL) [15] and a
snapshot stored in a non-volatile storage. Tarantool creates an entry
that contains the information about each data update (e.g., before
and after data images) and records it in the log. In addition, it takes
a snapshot of all data on DRAM and deletes the old log at a certain
interval. If data on DRAM is lost due to a system failure, Tarantool
can recover them by reading the latest snapshot and replaying the
transactions that are recorded in the log. The write-ahead logging
can be enabled or disabled with an execution parameter. Tarantool
supports four types of data structures for index (hash, tree, bitset,



Min-Move ’17, September 2017, Portland, Oregon, USA Satoshi Imamura, Mitsuru Sato, and Eiji Yoshida

Table 3: Pros and cons of DRAM and persistent memory for
applications which guarantee data persistence.

Access speed Logging

DRAM Faster Necessary
PM Slower Unnecessary

and rtree), and we use the tree data structure that is the default
setting.

4.2 Data Management on Persistent Memory
When Tarantool writes data to PM, the write is processed on proces-
sor caches at first; therefore, the data must be persisted by flushing
the corresponding cache line to PM. Intel recommends the use
of an optimized cache flushing instruction named CLWB [20]. As
this instruction does not invalidate a cache line when flushed, the
cache line can be accessed immediately by following instructions.
Although the flushed cache line is temporarily stored in a queue
of a memory controller, the CLWB instruction assumes that the
cache line is automatically and safely written to PM by a power-
fail feature called asynchronous DRAM refresh (ADR). Moreover,
the order of writes to PM must be preserved using memory fence
operations such as sfence.

In addition to data persistence, it is necessary to guarantee trans-
action atomicity on PM. As data becomes persistent when written
back to PM, we need a mechanism to roll-back writes to PM when
a transaction aborts before a commit. We implement atomic trans-
actions on PM by modifying the source code of Tarantool with the
libpmemobj library of the NVM Library [18] that provides APIs
for transactional operations. The operations in a block between
two special macros (TX_BEGIN and TX_END) are processed trans-
actionally. In this block, a memory region to be modified can be
specified with the pmemobj_tx_add_range_direct function. It takes
a snapshot of the region and saves it in an undo log. If a transaction
aborts, all the changes within the range are rolled-back automat-
ically. Moreover, the memory region is automatically persisted
when committing the transaction with the pmemobj_persist func-
tion, which internally calls CLWB and sfence instructions. Since
we select the tree data structure for index and data in the database
is maintained in the leafs, we guarantee the persistence of them
and the atomicity of functions that updates them using these APIs.

4.3 Trade-Off on Hybrid Main Memory
When an application which guarantees data persistence with log-
ging runs on a platform that apples hybrid main memory with
storages, a new trade-off must be taken into account to maximize
the overall performance. Table 3 summarizes the pros and cons
of DRAM and PM in this situation. If data is placed on DRAM, it
can be accessed faster because the access speed of DRAM is higher
than that of PM. However, the persistence of the data must be guar-
anteed with logging. The overhead of logging is composed of (1)
CPU cycles to construct a log entry for each data update and (2)
the I/O time to completely write the entry to storages [13]. Since
this overhead is not trivial, it may significantly hurt the overall

performance. On the other hand, if the data is placed on PM, log-
ging is unnecessary because data persistence is guaranteed with
the instructions described in the previous section. However, the
slower accesses (especially writes) to PM and the overhead of the
additional instructions on PM may hurt the overall performance.

We expect that the overhead of logging data on DRAM becomes
larger than the overhead of placing the data on PM instead of
DRAM if the data is written frequently. The impact of slower writes
to PM on the overall performance can be hidden by exploiting
instruction- and memory-level parallelism on modern computer
systems. However, the logging overhead cannot be hidden because
transactions must be processed atomically, which implies that the
following transaction cannot be processed until the log entry of the
current transaction is completely written to a storage on a commit.
We quantitatively evaluate this trade-off in the next section.

5 EVALUATION
In this section, we evaluate the trade-off between placing data on
faster DRAM with logging and slower PM without logging, by
running Tarantool with a micro-benchmark on our PM emulation
platform. We first explain the implementation of the benchmark
and then show the evaluation results.

5.1 Micro-benchmark
We implement a micro-benchmark that randomly executes select
(i.e., read) and replace (i.e., write) operations to records in the data-
base of Tarantool. This micro-benchmark imitates the implemen-
tation of the Yahoo! Cloud Serving Benchmark (YCSB) [4] that is
commonly used to evaluate NoSQL databases. We use our own
benchmark instead of YCSB, because YCSB simulates communi-
cations between clients and databases but we aim to evaluate the
performance of the database itself.

The pseudo code of our micro-benchmark is shown in Algo-
rithm 1. The inputs are the number of records stored in the database,
the number of total operations, and the ratio of replace operations
to the total operations (write ratio). Each record contains a key and
ten fields, each of which corresponds to 100 B data. Thus, the total
data size of each record is 1000 B. This benchmark first inserts all of
the records to the database and then executes the specified number
of operations. For each operation, it randomly chooses either select
or replace operation and executes the selected one to a randomly se-
lected record. The numbers of select and replace operations (#reads
and #writes) are calculated based on the total number of operations
and the write ratio, respectively. If the number of one operation
executed reaches the one’s number, that operation is not selected
after that. In our experiments, we set the numbers of records and
total operations to one million and change the write ratio from
0% to 100% at the step of 10% (e.g., 0.9 million select operations
and 0.1 million replace operations are totally executed if the write
ratio is 10%). The graphs in the next section report the through-
put (operations per second) of Tarantool during the one million
operations as a performance metric. Note that no snapshot is taken
in Tarantool during the execution of this benchmark because the
execution finishes tens of seconds at the most.



Evaluating a Trade-off between DRAM and Persistent Memory... Min-Move ’17, September 2017, Portland, Oregon, USA

Algorithm 1 Pseudo code of our micro-benchmark
Input: #records, #total_operations, write_ratio
Output: operations_per_sec
1: #reads = #total_operations * (100 - write_ratio) / 100
2: #writes = #total_operations * write_ratio / 100
3: record← create_1000B_record()
4: for i = 1 to #records do # Insert all records at first
5: inser t (i , record)
6: end for
7: read_cnt← 0
8: write_cnt← 0
9: new_record← create_1000B_record()
10: t1← get_current_time()
11: for i = 1 to #total_operations do
12: if read_cnt > #reads then
13: op← 2 # Choose r eplace
14: else if write_cnt > #writes then
15: op← 1 # Choose select
16: else
17: op← random value (1 to 2) # Randomly choose select or r eplace
18: end if
19: key← random value (1 to #records)
20: if op == 1 then
21: select (key)
22: read_cnt← read_cnt + 1
23: else
24: r eplace (key, new_record)
25: write_cnt← write_cnt + 1
26: end if
27: end for
28: t2← get_current_time()
29: operation_per_sec← #total_operations / (t2 - t1)

Table 4: Description of four types of executions.

Label Data placement Logging

DRAM w/o logging DRAM –

WAL-fsync DRAM WAL

WAL-nowrite DRAM WAL without
writes to log

PM PM –

5.2 Methodology
In order to evaluate the overheads of logging data on DRAM and
placing data on PM, we compare four types of executions sum-
marized in Table 4: DRAM w/o logging,WAL-fsync,WAL-nowrite,
and PM. DRAM w/o logging is an execution that places all data
on DRAM without logging, which does not incur the both over-
heads. WAL-fsync places all data on DRAM and guarantees data
persistence with the write-ahead logging (WAL). WAL-nowrite is
a similar execution to WAL-fsync but it eliminates the I/O time
from the logging overhead by skipping writes to the log file on the
storage. Although WAL-nowrite assumes the techniques to write
log entries to PM, as proposed by Fang et al. [6] and Gao et al. [8],
it does not include the impact of the PM latency. Finally, PM is an
execution that places all data on PM and guarantees transaction
atomicity and data persistence with the libpmemobj library. As we
change the PM latency to 2x, 4x, and 8x of the DRAM latency, the
value is added as the suffix to PM (e.g., PM-4x corresponds to the
execution on PM with the 4x latency).

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40 50 60 70 80 90 100

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t 

to
 D

R
A

M
 w

/o
 lo

gg
in

g

Write ratio [%]

WAL-fsync

WAL-nowrite

PM-4x

Figure 2: Normalized throughput to DRAMw/o logging. The
x-axis indicates the ratio of writes (i.e. replace operations) to
1,000,000 operations.

5.3 Results
Figure 2 plots the throughput (operations per second) of Taran-
tool along with the write ratio of our micro-benchmark. The PM
latency is set to 4x of the DRAM latency, and the throughput is
normalized by that of DRAM w/o logging. At first, we can know
the logging overhead from the result of WAL-fsync. It shows that
the logging overhead becomes larger as the write ratio is increased.
This is intuitive because the number of writes at a certain epoch
increases as the write ratio is increased. If the write ratio is 50%
(i.e., the workload has 50% reads and 50% writes), the throughput
of Tarantool degrades to 35%.

On the other hand, the overhead of placing data on PM instead
of DRAM is obtained from the result of PM-4x. We can see that
the throughput of PM-4x is much lower than that of WAL-fsync
when the write ratio is 0% and 10%. In these cases, the 4x higher
read latency of PM largely affects the throughput. However, the
throughput of PM-4x is expected to be better on real PM because
its actual read latency is close to the DRAM latency. In contrast,
PM-4x outperforms WAL-fsync at the over 20% write ratio. This
result means that the logging overhead becomes larger than the
overhead of placing data on PM if the data is frequently written,
which verifies our expectation mentioned in Section 4.3. That is, it
is better for performance to place frequently written data on PM
instead of DRAM, when an application which requires logging is
executed on hybrid main memory.

Finally, the result of WAL-nowrite indicates the overhead of
creating the log entries. This overhead remains even if WAL is
optimized to write the entires to PM instead of a storage. The
figure shows that this overhead is not trivial, but WAL-nowrite
outperforms PM-4x. This means that the overhead of creating log
entries is smaller than that of placing data on PM. However, WAL-
nowrite ignores the overhead of writing the log entries to PM. With
this overhead, the throughput of WAL-nowrite will be worse and
become compatible to that of PM-4x. In this case, placing data on
PM can achieve a comparable throughput to a PM-based logging
while saving the capacity of log entries on PM.

Figure 3 plots the throughput of PM with various latencies. Note
that the throughput is normalized by that of WAL-fsync, not DRAM



Min-Move ’17, September 2017, Portland, Oregon, USA Satoshi Imamura, Mitsuru Sato, and Eiji Yoshida

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

to
 W

A
L-

fs
yn

c

Write ratio [%]

PM-2x

PM-4x

PM-8x

Figure 3: Normalized throughput of PM with various laten-
cies to WAL-fsync.

w/o logging. We can observe that the throughput of PM is largely
affected by the PM latency. If it becomes 2x of the DRAM latency,
we can significantly improve the throughput by placing data on
PM compared to placing the data on DRAM with logging (e.g., 38%
at the 50% write ratio). Even if the PM latency is 8x longer than the
DRAM latency, heavily written data (over 60% write ratio) should
be placed on PM to improve the throughput.

6 CONCLUSIONS
In this paper, we focus on applications which guarantee data per-
sistent with logging and suggest a new trade-off between DRAM
and PM for data placement on platforms that apply hybrid main
memory with storages. Placing data on DRAM can avoid the slower
accesses to PM, but it incurs the logging overhead. On the other
hand, placing data on PM can avoid the logging overhead while
it suffers from slower accesses to PM. Our quantitative evaluation
using a PM emulation platform reveals that, compared to placing
frequently written data on DRAM with logging, the performance
of an in-memory database can be improved significantly by placing
the data on PM. This is because the logging overhead becomes
larger than the overhead of placing data on PM when the data is
heavily written. Based on these results, we need to rethink data
placement on hybrid main memory for applications which guaran-
tee data persistence. As future work, we will implement a logging
technique to write log entries to PM and quantitatively compare it
with placing data on PM.

ACKNOWLEDGMENTS
We would like to thank Dieter Kasper and Andreas Blümle for
helping with the persistent memory emulation platform.

REFERENCES
[1] Katelin A Bailey, Peter Hornyack, Luis Ceze, Steven D Gribble, and Henry M Levy.

2013. Exploring Storage Class Memory with Key Value Stores. In Proceedings
of the 1st Workshop on Interactions of NVM/FLASH with Operating Systems and
Workloads (INFLOW ’13). ACM, 4:1–4:8.

[2] Shimin Chen, Phillip B Gibbons, and Suman Nath. 2011. Rethinking Database
Algorithms for Phase Change Memory. In Proceedings of 2011 fifth Biennial
Conference on Innovative Data Systems Research.

[3] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O Through
Byte-addressable, Persistent Memory. In Proceedings of the ACM SIGOPS 22Nd

Symposium on Operating Systems Principles (SOSP ’09). ACM, 133–146. http:
//doi.acm.org/10.1145/1629575.1629589

[4] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC ’10). ACM, 143–154.

[5] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. 2016. Data
Tiering in Heterogeneous Memory Systems. In Proceedings of the Eleventh Euro-
pean Conference on Computer Systems (EuroSys ’16). ACM, 15:1–15:16.

[6] Ru Fang, Hui-I Hsiao, Bin He, C Mohan, and Yun Wang. 2011. High Performance
Database Logging using Storage Class Memory. In Proceeding of 2011 IEEE 27th
International Conference on Data Engineering (ICDE’11). 1221–1231.

[7] Mike Ferron-Jonesi. 2017. A New Breakthrough in Persistent Memory Gets Its
First Public Demo. https://itpeernetwork.intel.com/new-breakthrough-persistent-
memory-first-public-demo/. (May 2017). Last access: August 2017.

[8] Shen Gao, Jianliang Xu, Theo Härder, Bingsheng He, Byron Choi, and Haibo Hu.
2015. PCMLogging: Optimizing Transaction Logging and Recovery Performance
with PCM. IEEE Transactions on Knowledge and Data Engineering 27, 12 (2015),
3332–3346.

[9] Thai Le. 2016. How to Emulate Persistent Memory on an Intel® Architec-
ture Server. https://software.intel.com/en-us/articles/how-to-emulate-persistent-
memory-on-an-intel-architecture-server. (September 2016). Last access: August
2017.

[10] Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur
Mutlu, and Doug Burger. 2010. Phase-Change Technology and the Future of
Main Memory. IEEE Micro 30, 1 (jan 2010), 143.

[11] Soyoon Lee, Hyokyung Bahn, and Sam H Noh. 2014. CLOCK-DWF: A Write-
History-Aware Page Replacement Algorithm for Hybrid PCM and DRAM Mem-
ory Architectures. IEEE Trans. Comput. 63, 9 (2014), 2187–2200.

[12] Dong Li, Jeffrey S Vetter, Gabriel Marin, Collin McCurdy, Cristian Cira, Zhuo
Liu, and Weikuan Yu. 2012. Identifying Opportunities for Byte-Addressable
Non-Volatile Memory in Extreme-Scale Scientific Applications. In Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Processing Symposium
(IPDPS ’12). IEEE Computer Society, 945–956.

[13] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.
2014. Rethinking Main Memory OLTP Recovery. In Proceeding of 2014 IEEE 30th
International Conference on Data Engineering (ICDE ’14). 604–615.

[14] Jeffrey C Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi. 2009.
Operating System Support for NVM+DRAMHybridMainMemory. In Proceedings
of the 12th Conference on Hot Topics in Operating Systems (HotOS’09). USENIX
Association, 14.

[15] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. 1992.
ARIES: A Transaction Recovery Method Supporting Fine-granularity Locking
and Partial Rollbacks Using Write-ahead Logging. ACM Trans. Database Syst. 17,
1 (1992), 94–162.

[16] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas
Willhalm. 2014. SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data
Recovery. In Proceedings of the Tenth International Workshop on Data Management
on New Hardware (DaMoN ’14). ACM, 8:1–8:7.

[17] Ismail Oukid, Wolfgang Lehner, Thomas Kissinger, Thomas Willhalm, and Peter
Bumbulis. 2015. Instant Recovery for Main Memory Databases. In Proceedings of
2015 Seventh Biennial Conference on Innovative Data Systems Research (CIDR’15).

[18] pmem.io. 2017. Persistent Memory Programming. http://pmem.io/. (2017). Last
access: August 2017.

[19] Luiz E Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page Placement
in Hybrid Memory Systems. In Proceedings of the International Conference on
Supercomputing (ICS ’11). ACM, 85–95.

[20] Andy M Rudoff. 2016. Deprecating the PCOMMIT Instruction.
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-
instruction. (September 2016). Last access: August 2017.

[21] Tarantool. 2017. Get your data in RAM. Get compute close to data. Enjoy the
Performance. https://tarantool.org/. (2017). Last access: August 2017.

[22] Yiying Zhang and Steven Swanson. 2015. A Study of Application Performance
with Non-Volatile Main Memory. In Proceeding of the 2015 Symposium on Mass
Storage Systems and Technologies (MSST’15). 1–10.

http://doi.acm.org/10.1145/1629575.1629589
http://doi.acm.org/10.1145/1629575.1629589

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture of Target System
	3.1 Persistent Memory
	3.2 Hybrid Main Memory with Storages
	3.3 Emulation Platform

	4 Case Study: In-Memory Database
	4.1 Tarantool
	4.2 Data Management on Persistent Memory
	4.3 Trade-Off on Hybrid Main Memory

	5 Evaluation
	5.1 Micro-benchmark
	5.2 Methodology
	5.3 Results

	6 Conclusions
	Acknowledgments
	References

